Solving 2 x 2 Systems of Linear Equations

University of Minnesota Solving 2 x 2 Systems of Linear Equations

Preliminaries

- Graphs of Lines
- Algebraic Skills
 - Distributive Law
 - Combining Like Terms
 - Solving Linear Equations

Objectives

- Determine if two lines intersect
- Find the intersection of two lines

Intersecting Lines

Substitution Method

$$3x - 5y = 4$$
$$x = 4y - 1$$
$$3(4y - 1) - 5y = 4$$
$$12y - 3 - 5y = 4$$
$$7y = 7$$
$$y = 1$$
$$x = 4(1) - 1 = 3$$

Examples

$$2x - 3y = -8$$

 $8 = 4y$
 $3x + 2y = 20$

$$x = -1, y = 2$$
 $x = 2, y = 7$

Elimination Method

$$3x - 4y = -3$$

$$5x + 2y = 21$$
 multiply by 2

$$x = 3, y = 3$$

Inconsistent Systems

$$2x - y = 7$$
$$-4x + 2y = 6$$
$$2x - y = 7$$
$$-2x + y = 3$$

0 = 10

No solutions

Dependent Systems

$$2x - y = 7$$
$$4x - 2y = 14$$

$$-4x + 2y = -14$$
$$4x - 2y = 14$$

 $\mathbf{0}=\mathbf{0}$

Infinitely many solutions, the lines are the same line.

Solutions to Equations	Graph	Call the solutions
One <i>x</i> -value and one <i>y</i> -value	Lines Intersect	Consistent and Independent
False Statement	Parallel Lines	Inconsistent
True Statement	Overlapping Lines	Dependent