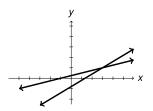
Solving 2 x 2 Systems of Linear Equations

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Graphs of Lines
- Algebraic Skills
 - Distributive Law
 - Combining Like Terms
 - Solving Linear Equations


Objectives

- Determine if two lines intersect
- Find the intersection of two lines

University of Minnesota Solving 2 x 2 Systems of Linear

Intersecting Lines

$$3x - 5y = 4$$
$$x = 4y - 1$$

Substitution Method

$$3x - 5y = 4$$
$$x = 4y - 1$$

$$3(4y - 1) - 5y = 4$$

$$12y - 3 - 5y = 4$$

$$7y = 7$$

$$y=1$$

$$x = 4(1) - 1 = 3$$

Examples

$$2x - 3y = -8$$

$$8 = 4y$$

$$5x-y=3$$

$$3x + 2y = 20$$

$$x = -1$$
. $v =$

$$x = -1, y = 2$$
 $x = 2, y = 7$

Elimination Method

$$3x - 4y = -3$$

$$5x + 2y = 21$$
 multiply by 2

$$\begin{array}{rcl}
3x - 4y & = & -3 \\
10x + 4y & = & 42 \\
\hline
13x & = & 39
\end{array}$$

$$x = 3, y = 3$$

University of Minnesota Solving 2 x 2 Systems of Linear Equat

Inconsistent Systems

$$2x - y = 7$$
$$-4x + 2y = 6$$

$$2x - y = 7$$
$$-2x + y = 3$$

$$0 = 10$$

No solutions

Dependent Systems

$$2x - y = 7$$

$$4x - 2y = 14$$
 $-4x + 2y = -14$
 $4x - 2y = 14$

$$0 = 0$$

Infinitely many solutions, the lines are the same line.

Solutions to a 2x2 System of Linear Equations

Solutions to Equations	Graph	Call the solutions
One <i>x</i> -value and one <i>y</i> -value	Lines Intersect	Consistent and Independent
False Statement	Parallel Lines	Inconsistent
True Statement	Overlapping Lines	Dependent