Polynomial and Rational Inequalities

UNinverity of Minnesota

Preliminaries

- Graphing Polynomials
- Graphing Rational Functions
- Interval Notation

Objectives

- Solve Polynomial Inequalities
- Solve Rational Inequalities

Example 3

$(x+4)(x-3) \geq 0$

The set of all values x for which $(x+4)(x-3) \geq 0$ is

$$
(-\infty,-4] \cup[3, \infty)
$$

University of Minnesota

Poymomia and Raional Inequalites

Example 1

$f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}} \geq 0$

The set of all values x for which $\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}} \geq 0$ is

$$
(-\infty,-3] \cup(-1,1) \cup(1, \infty)
$$

- Set one side of the inequality equal to zero
- Factor
- Divide the number line by placing the x-intercepts and asymptotes
- Analyze the factors to determine on which intervals the function is positive/negative
- For \leq and \geq, include the x-intercepts as the endpoints of the intervals
- Never include the x-values associated with asymptotes, as the function is undefined at these points.

$$
f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}}
$$

$$
\begin{gathered}
x^{2}<x+6 \\
x^{2}-x-6<0 \\
(x+2)(x-3)<0
\end{gathered}
$$

The set of all values x for which $x^{2}-x-6<0$ is
$(-2,3)$

