Graphing Rational Functions

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Intercepts
- Factoring Polynomials
- Graphing Polynomials
- Long Division of Polynomials

Objectives

- Graph Rational Functions

Example 1

$$
f(x)=\frac{x^{5}+5 x^{4}-5 x^{3}-45 x^{2}+108}{x^{3}-x^{2}-x+1}=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}}
$$

Keys to Graphing

- y-intercept
- x-intercepts
- vertical asymptotes
- end behavior

Example 1

Step 1: Find the y-intercept

$$
\begin{aligned}
f(x) & =\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}} \\
f(0) & =\frac{(0+3)^{3}(0-2)^{2}}{(0+1)(0-1)^{2}} \\
& =108
\end{aligned}
$$

Example 1

Step 2: Find the x-intercepts

$$
\begin{aligned}
& f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}} \\
& (x+3)=0 \quad \text { or } \quad(x-2)=0 \\
& x=-3 \quad \text { or } \quad x=2
\end{aligned}
$$

x-intercepts at -3 and 2

Example 1

Step 3: Find asymptotes

$$
f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}}
$$

$f(x)$ is undefined when $x=-1$ and when $x=1$

Example 1

Step 4: Analyze intervals

$$
f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}}
$$

Example 1

$$
f(x)=\frac{(x+3)^{3}(x-2)^{2}}{(x+1)(x-1)^{2}}
$$

$$
\begin{array}{cc:c:cc}
+ & - & + & + & + \\
\hline-3 & & & 2
\end{array} x
$$

Example 2

$$
f(x)=\frac{x^{3}-x^{2}-8 x+12}{x^{4}+2 x^{3}-2 x-1}
$$

Example 1

$$
f(x)=\frac{x^{5}+5 x^{4}-5 x^{3}-45 x^{2}+108}{x^{3}-x^{2}-x+1}
$$

End Behavior

$$
f(x)=\frac{x^{2}}{x^{4}-2 x^{2}+1}
$$

- If the degree of the numerator is less than the degree of the denominator, then

$$
\lim _{x \rightarrow \infty} f(x)=0 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

End Behavior

$$
f(x)=\frac{2 x^{2}-18}{x^{2}+1}
$$

- If the degree of the numerator is the same as the degree of the denominator, then long division will produce a constant and a remainder. In this case, the constant is a horizontal asymptote.

End Behavior

$$
f(x)=\frac{3 x^{3}+x^{2}+3 x+6}{x^{2}+1}
$$

- If the degree of the numerator is larger than the degree of the denominator, then long division will produce two terms and a remainder. In this case the graph approaches an oblique asymptote.

End Behavior

$$
f(x)=\frac{3 x^{4}+x^{3}-3 x^{2}-x+5}{x^{2}-1}
$$

- If the degree of the numerator is at least two greater than the degree of the denominator, then the graph resembles $x^{2}, x^{3}, x^{4}, \ldots$

End Behavior

$$
f(x)=\frac{x^{2}}{x^{4}-2 x^{2}+1}=\frac{x^{2}}{(x-1)^{2}(x+1)^{2}}
$$

End Behavior

$$
f(x)=\frac{2 x^{2}-18}{x^{2}+1}=2-\frac{20}{x^{2}+1}
$$

End Behavior

$$
f(x)=\frac{3 x^{3}+x^{2}+3 x+6}{x^{2}+1}=3 x+1+\frac{5}{x^{2}+1}
$$

End Behavior

$$
f(x)=\frac{3 x^{4}+x^{3}-3 x^{2}-x+5}{x^{2}-1}=3 x^{2}+x+\frac{5}{x^{2}-1}
$$

End Behavior

$$
f(x)=\frac{x^{5}+5 x^{4}-5 x^{3}-45 x^{2}+108}{x^{3}-x^{2}-x+1}
$$

Recap

- Find y-intercept
- Find x-intercepts
- Find vertical asymptotoes
- Determine end behavior
- Sketch the graph

