

Constant Growth	Constant Growth	Constant Growth
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Recursive Definition	Explicit Definition	Finding the formulas
		Given the arithmetic sequence
		<u>57 54 51 48 45 42 39</u>
Let $a_1 = 9$ and $a_{n+1} = a_n + 2$	Let $a_n = -5n + 13$	find a recursive formula and an explicit formula.
<u>9 11 13 15 17 19 21</u>	<u>8</u> <u>3</u> <u>-2</u> <u>-7</u> <u>-12</u> <u>-17</u> <u>-22</u>	Recursive Formula: $a_0 = 57, a_{n+1} = a_n - 3$
		Explicit Formula: $a_n = -3n + 57$

Example

Recap

If an arithmetic sequence contains the terms $a_7 = 52$ and $a_{12} = 82$, find a recursive formula and an explicit formula for a_n .

 $\frac{10}{a_1} \frac{16}{a_2} \frac{22}{a_2} \frac{28}{a_3} \frac{34}{a_4} \frac{40}{a_5} \frac{46}{a_6} \frac{52}{a_7} \frac{58}{a_8} \frac{64}{a_9} \frac{70}{a_{10}} \frac{76}{a_{11}} \frac{82}{a_{12}} \cdots$

University of M

Linear Growth and Arithmetic Sec

Recursive definition: $a_1 = 16$; $a_{n+1} = a_n + 6$

Explicit Definition: $a_n = 6n + 10$

• Recursive definition: State the value of a_1 and the recursion $a_{n+1} = a_n + d$

sola Linear Growth and Arithmetic Sequence

• Explicit definition: $a_n = d(n) + a_0$