Preliminaries and Objectives

Preliminaries
- Represent data
- Equations of Lines
- Sequences

Objectives
- Find values of an arithmetic sequences defined explicitly
- Find values of an arithmetic sequences defined recursively
- Find a recursive formula for an arithmetic sequence
- Find an explicit formula for an arithmetic sequence

Constant Growth

<table>
<thead>
<tr>
<th>Day</th>
<th>Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

- How many boxes are in the warehouse after Day 9?
- After how many days will the warehouse have 100 boxes?
- Can we find a general formula for the number of boxes after Day \(n \)?

\[a_n = 3n + 37 \]

Recursive Definition

Let \(a_1 = 9 \) and \(a_{n+1} = a_n + 2 \)

| 9 | 11 | 13 | 15 | 17 | 19 | 21 |

Explicit Definition

Let \(a_1 = -5n + 13 \)

| 8 | 3 | -2 | -7 | -12 | -17 | -22 |

Finding the formulas

Given the arithmetic sequence

\[57, 54, 51, 48, 45, 42, 39 \]

find a recursive formula and an explicit formula.

Recursive Formula:

\[a_0 = 57, a_{n+1} = a_n - 3 \]

Explicit Formula:

\[a_n = -3n + 57 \]
Example

If an arithmetic sequence contains the terms $a_7 = 52$ and $a_{12} = 82$, find a recursive formula and an explicit formula for a_n.

\begin{align*}
10 & \ 16 & \ 22 & \ 28 & \ 34 & \ 40 & \ 46 & \ 52 & \ 58 & \ 64 & \ 70 & \ 76 & \ 82 & \ \cdots \\
\end{align*}

$d = \frac{82 - 52}{12 - 7} = 6$

Recursive definition: $a_1 = 16; a_{n+1} = a_n + d$

Explicit definition: $a_n = dn + 10$

Recap

- Recursive definition: State the value of a_1 and the recursion $a_{n+1} = a_n + d$
- Explicit definition: $a_n = d(n) + a_0$