	Preliminaries and Objectives	Example 1 - Powers of 2
Sequences	Preliminaries Recursion 	
University of Minnesota	Objectives Develop notation for sequences 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
University of Minvesota Sequences	University of Minnesota Seguences	University of Minnesota Sequences

Tables		Example 2 - Fibonacci Numbers	Example 3 - Even Numbers
Position 1 2 3 4 5 6 7 : 16 :	Number 2 4 8 16 32 64 128 65536	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $F_{n+2} = F_{n+1} + F_n$

Example 4 - Odd Numbers	Example 4 - Odd Numbers	Example 2 - Fibonacci Numbers
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{F_1} = 1$ $\frac{1}{F_2} = \frac{3}{F_2} = \frac{5}{F_1} = \frac{8}{F_{n+2}} = \frac{13}{F_{n+2}}$ $F_{n+2} = F_{n+2}$
$D_1 = 1,$ $D_{next} = D_{prev} + 2$	$D_1 = 1,$ $D_{n+1} = D_n + 2$	

Recap

A sequence is an ordered list of numbers

- Explicit Formula a_n is given by a formula involving n
- Recursive Formula Give the value of the first term, then give a formula for the next term based on previous terms.
- The subscript indicates the location in the sequence

University of Minnesota Sequences