Properties of Logarithms		Preliminaries • Laws of Exponents • Definition of Logarithm Objectives • Law of Logarithms		Exponential Notation $b^m = x$ $b^0 = 1$	Logarithmic Notation $m = \log_b x$ $0 = \log_b 1$
University of Minnesota	Properties of Logarithms	University of Minnesota		University of Minnesota Combining Exponents an	Properties of Logarithms
Exponential Notation $b^m = x$ $b^1 = b$	Logarithmic Notation $m = \log_b x$ $1 = \log_b b$	Exponential Notation $b^m = x$ $\log_b b^m =$	Logarithmic Notation $m = \log_b x$ $\log_b x = m$	Exponential Notation $b^m = x$ $b^{\log_b x} =$	Logarithmic Notation $m = \log_b x$ $b^m = x$
University of Minnesota Negative Exponents = Rec	Properties of Logarithms	University of Minnesota Adding Exponents = Mult	Properties of Logarithms tiply Numbers	University of Minnesota Subtracting Exponents =	Properties of Logarithms Dividing Numbers
Exponential Notation $b^m = x$ $\frac{1}{x} = \frac{1}{b^m} = b^{-m}$	Logarithmic Notation $m = \log_b x$ $-\log_b x = \log_b \frac{1}{x}$	Exponential Notation $b^m = x$ $b^n = y$ $xy = b^m \cdot b^n = b^{m+n}$	Logarithmic Notation $m = \log_b x$ $n = \log_b y$ $\log_b x + \log_b y = \log_b xy$	Exponential Notation $b^m = x$ $b^n = y$ $\frac{x}{y} = \frac{b^m}{b^n} = b^{m-n}$	Logarithmic Notation $m = \log_b x$ $n = \log_b y$ $\log_b x - \log_b y = \log_b \frac{x}{y}$

Recap

		$b^m = x$	$\log_b x = m$
		$b^n = y$	$log_b y = n$
Exponential Notation	Logarithmic Notation		1
$b^m = x$	$m = \log_b x$	$\log_b 1 = 0$	$\log_b \frac{1}{x} = -\log_b x$
$x^n = (b^m)^n = b^{mn} = b^{n \cdot m}$	$\log_b x^n = n \cdot \log_b x$	$\log_b b = 1$	$\log_b xy = \log_b x + \log_b y$
		$\log_b b^m = m$	$\log_b \frac{x}{y} = \log_b x - \log_b y$
		$b^{\log_b x} = x$	$\log_b x^n = n \cdot \log_b x$

University of Minnesota Properties of Logarithms

University of Minnesota Properties of Logarithms