Properties of Logarithms

תL Universtry of Minesoota

Preliminaries

- Laws of Exponents
- Definition of Logarithm

Objectives

- Law of Logarithms

Combining Exponents and Logarithms

Exponential Notation

$$
\begin{array}{cl}
b^{m}=x & m=\log _{b} x \\
& \log _{b} b^{m}=\log _{b} x=m
\end{array}
$$

Logarithmic Notation

Exponential Notation
Logarithmic Notation
$b^{m}=x$
$m=\log _{b} x$
$b^{0}=1$
$0=\log _{b} 1$

Exponential Notation

$$
b^{1}=b \quad 1=\log _{b} b
$$

University of Mimesotala	Properties of Logarithms
Adding Exponents $=$ Multiply Numbers	

Exponential Notation	Logarithmic Notation
$b^{m}=x$	$m=\log _{b} x$
$\frac{1}{x}=\frac{1}{b^{m}}=b^{-m}$	$-\log _{b} x=\log _{b} \frac{1}{x}$

Exponential Notation

$$
\begin{gathered}
b^{m}=x \\
b^{n}=y \\
x y=b^{m} \cdot b^{n}=b^{m+n}
\end{gathered}
$$

Logarithmic Notation
$m=\log _{b} x$
$n=\log _{b} y$

$$
\log _{b} x+\log _{b} y=\log _{b} x y
$$

$\log _{b} x+\log _{b} y=\log _{b} x y$

Negative Exponents = Reciprocals

Subtracting Exponents = Dividing Numbers
Exponential Notation

$$
b^{m}=x
$$

Logarithmic Notation

$$
m=\log _{b} x
$$

$$
b^{\log _{b} x}=b^{m}=x
$$

Exponential Notation	Logarithmic Notation
$b^{m}=x$	$m=\log _{b} x$
$b^{n}=y$	$n=\log _{b} y$
$\frac{x}{y}=\frac{b^{m}}{b^{n}}=b^{m-n}$	$\log _{b} x-\log _{b} y=\log _{b} \frac{x}{y}$

	$b^{m}=x$	$\log _{b} x=m$	
Exponential Notation	Logarithmic Notation	$b^{n}=y$	$\log _{b} y=n$
$b^{m}=x$	$m=\log _{b} x$	$\log _{b} 1=0$	$\log _{b} \frac{1}{x}=-\log _{b} x$
$x^{n}=\left(b^{m}\right)^{n}=b^{m n}=b^{n \cdot m}$	$\log _{b} x^{n}=n \cdot \log _{b} x$	$\log _{b} b=1$	$\log _{b} x y=\log _{b} x+\log _{b} y$
		$\log _{b} b^{m}=m$	$\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$
$b^{\log _{b} x}=x$	$\log _{b} x^{n}=n \cdot \log _{b} x$		

