

Preliminaries and Objectives

Notation	Example 1
$A = Pe^{rt}$	If \$6000 is invested at 3% interest for 7 years, how much will the investment be worth at the end of the investment period?
	$A = Pe^{rt}$
• $A =$ Accrual, the value at time t	
• P = Principal	${\sf A}=\$6000e^{(.03)(7)}pprox\7402.06
• <i>t</i> = time in years	
• r = interest rate (APR)	

University of Minnesota Compounding Interest

Example 2

How much need to be invested now so that an investment at 5% interest will be worth \$25,000 in three years?

$$25000 = Pe^{(.05)(3)} = Pe^{.15}$$

$$P \approx \frac{$25000}{1.1618} \approx $21517.70$$

Univers

Example 3

At what interest would you need to invest \$100,000 so that in 25 years, the investment would be worth \$500,000?

$A = Pe^{rt}$ $550000 = \$100000e^{(r)(25)}$ $\frac{\$50000}{10000} = \frac{\$100000e^{(r)(25)}}{10000}$ $\frac{\$25000}{10000} = \frac{\$100000e^{(r)(25)}}{10000}$ $5 = e^{25r}$ $\ln 5 = 25r$ $r \approx 6.44\%$ $r \approx 6.44\%$		$A = P e^{rt}$
$\begin{array}{l} 000 = Pe^{(.05)(3)} = Pe^{.15} \\ & \frac{\$500000}{100000} = \frac{\$100000e^{(r)(25)}}{100000} \\ & 5 = e^{25r} \\ & 1.1618 \end{array} \\ & s \$21517.70 \\ & 1n 5 = 25r \\ & r \approx 6.44\% \end{array}$	$A = Pe^{rt}$	$500000 = 100000e^{(r)(25)}$
$\approx \frac{\$25000}{1.1618} \approx \21517.70 $5 = e^{25r}$ $\ln 5 = 25r$ $r \approx 6.44\%$ y of Minnesota Compounding Interest University of Minnesota Compounding Interest	$000 = Pe^{(.05)(3)} = Pe^{.15}$	$\frac{\$500000}{100000} = \frac{\$100000e^{(r)(25)}}{100000}$
$ln 5 = 25r$ $r \approx 6.44\%$ y of Minnesota Compounding Interest Compounding Interest Compounding Interest	≈	$5 = e^{25r}$
$r \approx 6.44\%$ y of Minnesota Compounding Interest Compounding Interest Compounding Interest		$\ln 5 = 25r$
y of Minnesota Compounding Interest University of Minnesota Compounding Interest		rpprox 6.44%
	ty of Minnesota Compounding Interest	University of Minnesota Compounding Interest

Example 4

How long would you need to invest \$3,000 at 4% interest so that at the end of the investment period, it would be worth \$5,000?

$$A = Pe^{rt}$$

$$5000 = 3000e^{(.04)(t)}$$

$$\frac{5000}{3000} = e^{.04t}$$
$$\ln \frac{5}{3} = .04t$$

 $t \approx 12.77$ years

University of Minnesota Compounding Interest

Recap

• $A = Pe^{rt}$

• To solve for *r* or *t*, change from exponential form to logarithmic form

University of Minnesota Compounding Interest