

Preliminaries and Objectives

-	 • 	-		
Recu	reiva	Det	initi	<u>on</u>
11000				

ecursive Definition	Explicit Definition
Let $g_1 = 5$ and $g_{n+1} = (10)(g_n)$	Let $g_n = (16) \left(\frac{1}{2}\right)^n$
<u>5 50 500 5000</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Finding the formulas

Given the geometric sequence

<u>3 12 48 192 768 3072</u>

find a recursive formula and an explicit formula.

University of Minnesota

Recursive Formula:

 $g_0 = 3, g_{n+1} = (4)(g_n)$

Explicit Formula:

 $g_n = 3(4^n)$

Example 1

If a geometric sequence contains the terms $g_3 = 2$ and $g_7 = 162$, find a recursive formula and an explicit formula for g_n .

 $\frac{\frac{2}{27}}{\frac{9}{9}} \frac{\frac{2}{3}}{g_1} \frac{\frac{2}{3}}{\frac{2}{g_3}} \frac{2}{g_3} \frac{6}{\frac{18}{54}} \frac{54}{g_7} \frac{162}{g_7} \dots \dots \dots \dots$ r = 4th root of $\frac{162}{2} = 4$ th root of 81 = 3Recursive definition: $g_1 = \frac{2}{9}$; $g_{n+1} = (3)(g_n)$ Explicit Definition: $g_n = \frac{2}{27}(3^n)$

University of Minnesota

Example 2

You put a \$500 purchase on your credit card. Each month, interest is compounded until at the end of 9 months, you owe \$571.70. What is the interest rate?

 $g_0 = 500, g_9 = 571.70$

$$g_9 = g_0(r^9) \Rightarrow r^9 = \frac{571.70}{500} = 1.1434 \Rightarrow r = 1.015$$

The interest rate is 1.5% per month or 18% annually.

Recap

• Recursive definition: State the value of g_0 and the recursion $g_{n+1} = (r)(g_n)$

• Explicit definition: $g_n = (g_0)r^n$