Preliminaries and Objectives

Preliminaries

- Sequences
- Linear Growth
- Arithmetic Sequences

Objectives

- Find values of a geometric sequence defined explicitly
- Find values of a geometric sequence defined recursively
- Find a recursive formula for a geometric sequence
- Find an explicit formula for a geometric sequence

Explicit Definition

$$
\begin{aligned}
& \text { Let } g_{1}=5 \text { and } g_{n+1}=(10)\left(g_{n}\right) \\
& 5 \quad 50
\end{aligned}
$$

Let $g_{n}=(16)\left(\frac{1}{2}\right)^{n}$

| 16 | 8 | 4 | 2 | $\frac{1}{2}$ | $\frac{1}{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Finding the formulas

Given the geometric sequence
$3 \quad 12 \quad 48 \quad 192 \quad 768 \quad \underline{3072}$
find a recursive formula and an explicit formula.

Recursive Formula:
$g_{0}=3, g_{n+1}=(4)\left(g_{n}\right)$
Explicit Formula:
$g_{n}=3\left(4^{n}\right)$

Example 2

You put a $\$ 500$ purchase on your credit card. Each month, interest is compounded until at the end of 9 months, you owe $\$ 571.70$. What is the interest rate?
$g_{0}=500, g_{9}=571.70$
$g_{9}=g_{0}\left(r^{9}\right) \Rightarrow r^{9}=\frac{571.70}{500}=1.1434 \Rightarrow r=1.015$

The interest rate is 1.5% per month or 18% annually.

Example 1

If a geometric sequence contains the terms $g_{3}=2$ and $g_{7}=162$, find a recursive formula and an explicit formula for g_{n}.

$r=4$ th root of $\frac{162}{2}=4$ th root of $81=3$
Recursive definition: $g_{1}=\frac{2}{9} ; g_{n+1}=(3)\left(g_{n}\right)$
Explicit Definition: $g_{n}=\frac{2}{27}\left(3^{n}\right)$

- Recursive definition: State the value of g_{0} and the recursion $g_{n+1}=(r)\left(g_{n}\right)$
- Explicit definition: $g_{n}=\left(g_{0}\right) r^{n}$

