Linear Growth and Arithmetic Sequences

Preliminaries and Objectives

Preliminaries

- · Represent data
- Equations of Lines
- Sequences

Objectives

- Find values of an arithmetic sequences defined explicitly
- Find values of an arithmetic sequences defined recursively
- Find a recursive formula for an arithmetic sequence
- Find an explicit formula for an arithmetic sequence

University of Minnesota

Constant Growth

Day	Boxes
0	37
1	40
2	43
3	46
4	49
:	:
9	?
:	:
?	100

- How many boxes are in the warehouse after Day 9?
- After how many days will the warehouse have 100 boxes?
- Can we find a general formula for the number of boxes after Day n?

$$a_n =$$

Constant Growth

Day	Boxes	$a_n =$ number of boxes after Day n
0	37	$a_1 = 40, a_2 = 43, a_3 = 46, a_4 = 49$
1	40	$a_1 = 40, a_2 = 40, a_3 = 40, a_4 = 40$
2 3 4	43	$a_{next} = a_{prev} + 3$
3	46	none prov
4	49	$a_{n+1}=a_n+3, a_1=40, a_0=37$
:	:	
9	: ?	$a_{next} = a_{prev} + d$
:	:	$a_n = 3n + 37$
: ?	100	S ₁₁ S S1
•	1 . 50	v = mx + b

Constant Growth

Boxes 37 40 43 3 46 49 ? 9 100

How many boxes are in the warehouse after Day 9?

$$a_9 = 3(9) + 37 = 64$$

Constant Growth

Day	Boxes
0	37
1	40
2	43
3	46
4	49
:	:
9	?
:	:
?	100

After how many days will the warehouse have 100 boxes?

Find
$$n$$
, if $a_n = 100$

$$100 = 3(n) + 37$$

$$100 - 37 = 3n$$

$$63 = 3n$$

$$\frac{63}{3} = n$$

University of Minnesota

Recursive Definition

Let
$$a_1 = 9$$
 and $a_{n+1} = a_n + 2$

Explicit Definition

Let
$$a_n = -5n + 13$$

Finding the formulas

Given the arithmetic sequence

57 54 51 48 45 42 39

find a recursive formula and an explicit formula.

Recursive Formula:

$$a_0 = 57$$
, $a_{n+1} = a_n - 3$

Explicit Formula:

$$a_n = -3n + 57$$

University of Minnesota

Recap

- Recursive definition: State the value of a_1 and the recursion $a_{n+1} = a_n + d$
- Explicit definition: $a_n = d(n) + a_0$

University of Minnesota Linear Growth and Arithmetic Sequences

Example

If an arithmetic sequence contains the terms $a_7 = 52$ and $a_{12} = 82$, find a recursive formula and an explicit formula for a_n .

$$\frac{10}{a_1} \ \frac{16}{a_1} \ \frac{22}{a_2} \ \frac{28}{a_3} \ \frac{34}{a_4} \ \frac{40}{a_5} \ \frac{46}{a_6} \ \frac{52}{a_7} \ \frac{58}{a_8} \ \frac{64}{a_9} \ \frac{70}{a_{10}} \frac{76}{a_{11}} \frac{82}{a_{12}} \cdots$$

$$d=\frac{82-52}{12-7}=6$$

Recursive definition: $a_1 = 16$; $a_{n+1} = a_n + 6$

Explicit Definition: $a_n = 6n + 10$

University of Minnesota Linear Growth and Arit