Preliminaries and Objectives

Preliminaries

- Represent data
- Equations of Lines
- Sequences

Objectives

- Find values of an arithmetic sequences defined explicitly
- Find values of an arithmetic sequences defined recursively
- Find a recursive formula for an arithmetic sequence
- Find an explicit formula for an arithmetic sequence

Constant Growth

Day	Boxes
0	37
1	40
2	43
3	46
4	49
\vdots	\vdots
9	$?$
\vdots	\vdots
$?$	100

$a_{n}=$ number of boxes after Day n

$$
a_{1}=40, a_{2}=43, a_{3}=46, a_{4}=49
$$

$$
a_{\text {next }}=a_{\text {prev }}+3
$$

$$
a_{n+1}=a_{n}+3, a_{1}=40, a_{0}=37
$$

$$
a_{\text {next }}=a_{\text {prev }}+d
$$

$$
a_{n}=3 n+37
$$

$$
y=m x+b
$$

Constant Growth

Day	Boxes
0	37
1	40
2	43
3	46
4	49
\vdots	\vdots
9	$?$
\vdots	\vdots
$?$	100

Constant Growth

Day	Boxes
0	37
1	40
2	43
3	46
4	49
\vdots	\vdots
9	$?$
\vdots	\vdots
$?$	100

After how many days will the warehouse have 100 boxes?
Find n, if $a_{n}=100$
$100=3(n)+37$
$100-37=3 n$
$63=3 n$
$\frac{63}{3}=n$
$21=n$

$$
\begin{aligned}
& \text { Let } a_{1}=9 \text { and } a_{n+1}=a_{n}+2 \\
& 9 \quad 11 \quad 13 \quad 15 \quad 17 \quad 19 \quad 21
\end{aligned}
$$

Finding the formulas

Given the arithmetic sequence
$\begin{array}{lllllll}57 & 54 & 51 & 48 & 45 & 42 & 39\end{array}$
find a recursive formula and an explicit formula.

Recursive Formula:
$a_{0}=57, a_{n+1}=a_{n}-3$
Explicit Formula:
$a_{n}=-3 n+57$

Example

If an arithmetic sequence contains the terms $a_{7}=52$ and $a_{12}=82$, find a recursive formula and an explicit formula for a_{n}.
$10 \frac{16}{a_{1}} \frac{22}{a_{2}} \frac{28}{a_{3}} \frac{34}{a_{4}} \frac{40}{a_{5}} \frac{46}{a_{6}} \frac{52}{a_{7}} \frac{58}{a_{8}} \frac{64}{a_{9}} \frac{70}{a_{10}} \frac{76}{a_{11}} \frac{82}{a_{12}} \cdots$
$d=\frac{82-52}{12-7}=6$

Recursive definition: $a_{1}=16 ; a_{n+1}=a_{n}+6$
Explicit Definition: $a_{n}=6 n+10$

Recap

- Recursive definition: State the value of a_{1} and the recursion $a_{n+1}=a_{n}+d$
- Explicit definition: $a_{n}=d(n)+a_{0}$

