Sequences

University of Minnesota

University of Minnesota

Preliminaries and Objectives

Preliminaries

Recursion

Objectives

• Develop notation for sequences

University of Minnesota Sequen

Example 1 - Powers of 2

2 4 8 16 32 64 128 65536 1st 2nd 3rd 4th 5th 6th 7th

Tables

Position	Number
1	2
2	4
3	8
4	16
5	32
6	64
7	128
÷	:
16	65536
:	:

University of Minnesota Sequences

University of Minnesota Sequences

Example 2 - Fibonacci Numbers

1 1 2 3 5 8 13 ...

$$F_1=1$$
 $\{F_n\}=$ Fibonacci numbers $F_2=1$ $F_3=2$ $F_4=3$ $F_5=5$ $F_6=8\dots$

University of Minnesota

Example 3 - Even Numbers

 $E_n = 2n$

University of Minnesota

Example 4 - Odd Numbers

 $D_1 = 1$,

 $D_{next} = D_{prev} + 2$

Example 4 - Odd Numbers

 $D_1 = 1$,

 $D_{n+1} = D_n + 2$

University of Minnesota Sequences

University of Minnesota Sequences

Example 2 - Fibonacci Numbers

<u>1</u> <u>1</u> <u>2</u> <u>3</u> <u>5</u> <u>8</u> <u>13</u> ...

 $F_1 = 1$ $F_2 = 1$ $F_{n+2} = F_{n+1} + F_n$

University of Minnesota

Recap

A **sequence** is an ordered list of numbers

- Explicit Formula a_n is given by a formula involving n
- Recursive Formula Give the value of the first term, then give a formula for the next term based on previous terms.
- The subscript indicates the location in the sequence

University of Minnesota Sequences