Preliminaries and Objectives

Preliminaries:

• Standard model for exponential growth and decay

 $A(t) = A_0 e^{rt}$

Newton's Law of Cooling

• Conversion between logaritmic form and exponential form

Objectives:

· Solve problems using Newton's Law of Cooling

University of Minnesota

University of Minnesota

Cooling to Room Temperature

^°C

roomtemperature

Notation

$$T^*(t) = T_0^* e^{-kt}$$

- $T^*(t)$ = temperature at time t
- $T_0^* = initial temperature$
- t = time
- k = rate of decay

$$(T_t-T_m)=(T_0-T_m)e^{-kt}$$

$$T^*(t) = (T_t - T_m)$$

Example

A cup of coffee is heated to $80^{\circ}C$. It is placed in a room whose temperature is $20^{\circ}C$. After 2 minutes, the temperature has decreased to $60^{\circ}C$. At what time will the coffee have cooled to $40^{\circ}C$?

$$T^*(t) = T_0^* e^{-kt}$$

Time	Temp above r.t.
0	80 - 20 = 60
2	60 - 20 = 40
?	40 - 20 = 20

University of Minnesota

$$40 = 60e^{-2k} \Rightarrow k \approx 0.20273$$

 $20 = 60e^{-0.20273t} \Rightarrow t \approx 5.42$ min.

Newton's Law of Cooling

Recap

Newton's Law of Cooling	
$T^*(t) = T_0^* e^{-kt}$	

All temperatures are measured as temperature above room temperature.

University of Minnesota

Newton's Law of Cooling

Details of Example

$$T^{*}(t) = T_{0}^{*}e^{-kt}$$

$$\Rightarrow 40 = 60e^{-2k}$$

$$\Rightarrow \frac{40}{60} = e^{-2k}$$

$$\Rightarrow \ln \frac{40}{60} = -2k$$

$$\Rightarrow \ln \frac{60}{40} = 2k$$

$$\Rightarrow k = \frac{\ln 3/2}{2}$$

$$\Rightarrow k \approx 0.20273$$

Details of Example

$$T^*(t) = T_0^* e^{-kt}$$

$$\Rightarrow 20 = 60 e^{-0.20273t}$$

$$\Rightarrow \frac{20}{60} = e^{-0.20273t}$$

$$\Rightarrow \ln \frac{20}{60} = -0.20273t$$

$$\Rightarrow \ln 3 = 0.20273t$$

$$\Rightarrow t = \frac{\ln 3}{0.20273}$$

$$\Rightarrow t \approx 5.42$$

University of Minnesota Newton's Law of Cooling

University of Minnesota Newton's Law of Cooling