Solving Systems of Non-linear Equations

4. University of Minnesota

Preliminaries and Objectives

Preliminaries

- Graph of circles, ellipses, parabolas and hyperbolas.
- Transformation of Graphs
- Solving polynomial equations in one variable.

Objectives

- Find the intersection points of polynomial equations.

Solving Polynomial Equations by Factoring

$$
\begin{gathered}
4 x^{2}+x-14=0 \\
(4 x-7)(x+2)=0 \\
4 x-7=0 \text { or } x+2=0 \\
x=\frac{7}{4} \text { or } x=-2
\end{gathered}
$$

Solving Polynomial Equations by Factoring

$$
\begin{gathered}
x^{4}-25 x^{2}+144=0 \\
\left(x^{2}-9\right)\left(x^{2}-16\right)=0 \\
(x-3)(x+3)(x-4)(x+4)=0 \\
x= \pm 3 \text { or } x= \pm 4
\end{gathered}
$$

Solving Polynomial Equations by Completing the Square

$$
\begin{aligned}
& (x-3)^{2}=7 \\
& x-3= \pm \sqrt{7} \\
& x=3 \pm \sqrt{7}
\end{aligned}
$$

Solving Polynomial Equations by the Quadratic Formula

If $a x^{2}+b x+c=0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Hyperbola - Version 2

$$
x y=1 \Leftrightarrow y=\frac{1}{x}
$$

Example 1 - Substitution

$$
\begin{gathered}
y=2 x^{2} \\
y=2 x+4
\end{gathered}
$$

Example 1 - Substitution

$$
\begin{gathered}
y=2 x^{2} \\
y=2 x+4 \\
2 x^{2}=2 x+4 \\
2 x^{2}-2 x-4=0 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2 \text { or } x=-1 \\
(2,8) \quad(-1,2)
\end{gathered}
$$

Example 2 - Substitution

$$
\begin{gathered}
x y=12 \\
x^{2}+y^{2}=25
\end{gathered}
$$

Example 2 - Substitution

$$
\begin{gathered}
x y=12 \\
x^{2}+y^{2}=25 \\
y=\frac{12}{x} \\
x^{2}+\left(\frac{12}{x}\right)^{2}=25 \\
x^{2}+\frac{144}{x^{2}}=25 \\
x^{4}+144=25 x^{2} \\
x^{4}-25 x^{2}+144=0 \\
(x-3)(x+3)(x-4)(x+4)=0 \\
(3,4),(4,3),(-3,-4),(-4,-3)
\end{gathered}
$$

Example 3 - Elimination

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
& \frac{x^{2}}{9}-y^{2}=1
\end{aligned}
$$

Example 3 - Elimination

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
& \frac{x^{2}}{9}-y^{2}=1 \\
& \frac{9 x^{2}}{4}+y^{2}=9 \\
& \frac{85 x^{2}}{36}=10 \\
& x= \pm \sqrt{\frac{72}{17}} \\
& y^{2}=-\frac{9}{17}
\end{aligned}
$$

Example 4 - Substitution

$$
\begin{gathered}
4 x^{2}+y^{2}=16 \\
y^{2}=x+2 \\
4 x^{2}+x+2=16 \\
4 x^{2}+x-14=0 \\
(4 x-7)(x+2)=0 \\
x=\frac{7}{4} \text { or } x=-2 \\
(-2,0),\left(\frac{7}{4}, \frac{\sqrt{15}}{2}\right),\left(\frac{7}{4},-\frac{\sqrt{15}}{2}\right)
\end{gathered}
$$

Example 5 - Substitution

$$
\begin{gathered}
y=\sqrt{x} \\
y=x-2 \\
\sqrt{x}=x-2 \\
x=x^{2}-4 x+4 \\
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
x=4 \text { or } x=1 \\
(4,2),(1,-1)
\end{gathered}
$$

- Substitution and Elimination techniques may be used
- Reduce the equation to a single variable
- Find all solutions for the first variable
- Substitute to find all ordered pairs
- Check solutions by graphing

