Solving 3×3 Systems of Linear Equations

4. University of Minnesota

Preliminaries and Objectives

Preliminaries

- Solving a 2×2 system of linear equations
- Substitution Method
- Elimination Method

Objectives

- Find the solution to a system of 3 equations in three variables.

Solving 2×2 Systems of Equations - Elimination Method

- Multiply one or both equations by a constant so that one variable will cancel.
- Add equations together to get new equation with one variable.
- Solve for first variable.
- Substitute to find second variable.

Solving 3×3 Systems of Equations

- Pick two of the three equations and multiply one or both equations by a constant so that one variable will cancel.
- Add equations together to get new equation with two variables.
- Pick a different pair of equations and multiply one or both equations by a constant so that the same variable will cancel.
- Add equations together to get new equation with the same two variables.
- Solve the new 2×2 system

Example 1

(I) $x+y+z=0$
(II) $-2 x+2 y-4 z=12$
(III) $2 x-3 y-z=7$
$2 *(I) 2 x+2 y+2 z=0$

(V) $\quad-y-5 z=19$

Example 1

$$
\begin{aligned}
& \text { (IV) } 4 y-2 z=12 \\
& \text { (V) }-y-5 z=19 \\
& \begin{aligned}
&(I V) \\
& 4 y-2 z=12 \\
& 4 *(V)-4 y-20 z=76 \\
& \hline-22 z=88
\end{aligned} \\
& \text { (V) } \quad-y+20=-4 \\
& \text { (I) } x+y+z=0 \\
& \text { (I) } \begin{aligned}
x+1-4 & =0 \\
x & =3
\end{aligned}
\end{aligned}
$$

$(3,1,-4)$

Geometry of Linear Equations in 3-dimensional space

- Each linear equation is the equation of a plane.
- Two planes intersect in a line (usually).
- A line intersects the third equation (plane) at a point (usually).
- A false statement means two planes were parallel and there are no points of intersection of all three planes.
- A true statement means that there are infinitely many solutions, either because two planes were the same plane or that every pair of planes intersects at the same line.

Example 2

(I) $-3 x+2 y-4 z=12$
(II) $\quad y+2 z=5$
(III) $2 x+4 y+5 z=2$
$2 *(I) \quad-6 x+4 y-8 z=24$

$3 *(I I)$	$6 x+12 y+15 z$	$=6$
$(I V)$	$16 y+7 z=30$	

$-16 *(I I)-16 y-32 z$	$=-80$
$-25 z$	$=-50$

$z=2$
$\begin{array}{lll}y & =1 \\ x & = & -6\end{array}$
$(-6,1,2)$

- Eliminate one variable using one pair of equations.
- Eliminate the same variable from a different pair of equations.
- Solve the resulting 2×2 system of equations.
- Substitute to find the values of the other variables.

