Solving 2 x 2 Systems of Linear Equations
Preliminaries and Objectives

Preliminaries

- Graphs of Lines
- Algebraic Skills
 - Distributive Law
 - Combining Like Terms
 - Solving Linear Equations

Objectives

- Determine if two lines intersect
- Find the intersection of two lines
Intersecting Lines

$$3x - 5y = 4$$

$$x = 4y - 1$$
Substitution Method

\[
\begin{align*}
3x - 5y &= 4 \\
x &= 4y - 1
\end{align*}
\]

\[
3(4y - 1) - 5y = 4
\]

\[
12y - 3 - 5y = 4
\]

\[
7y = 7
\]

\[
y = 1
\]

\[
x = 4(1) - 1 = 3
\]
Examples

\begin{align*}
2x - 3y &= -8 \\
 - 3y &= -8 \\
8 &= 4y \\
5x - y &= 3 \\
3x + 2y &= 20 \\
 + 2y &= \\
x &= -1, \quad y = 2 \\
x &= 2, \quad y = 7
\end{align*}
Elimination Method

\[3x - 4y = -3\]
\[5x + 2y = 21\] multiply by 2

\[
\begin{align*}
3x - 4y &= -3 \\
10x + 4y &= 42
\end{align*}
\]

\[13x = 39\]

\[x = 3, \ y = 3\]
Inconsistent Systems

Solving 2 x 2 Systems of Linear Equations

\[2x - y = 7 \]
\[-4x + 2y = 6 \]
\[2x - y = 7 \]
\[-2x + y = 3 \]

No solutions
Dependent Systems

2x − y = 7
4x − 2y = 14

−4x + 2y = −14
4x − 2y = 14

0 = 0

Infinitely many solutions, the lines are the same line.
Solutions to a 2x2 System of Linear Equations

<table>
<thead>
<tr>
<th>Solutions to Equations</th>
<th>Graph</th>
<th>Call the solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>One x-value and one y-value</td>
<td>Lines Intersect</td>
<td>Consistent and Independent</td>
</tr>
<tr>
<td>False Statement</td>
<td>Parallel Lines</td>
<td>Inconsistent</td>
</tr>
<tr>
<td>True Statement</td>
<td>Overlapping Lines</td>
<td>Dependent</td>
</tr>
</tbody>
</table>