Sigma Notation

4. University of Minnesota

Preliminaries and Objectives

Preliminaries:

- Sequences of numbers

Objectives:

- Find a sum written using Sigma Notation

Example 1

$$
\begin{gathered}
\sum_{k=1}^{10} 2 k \\
2+4+6+8+10+12+14+16+18+20=110 \\
\sum_{k=0}^{9} 2(k+1)
\end{gathered}
$$

Example 2

$$
\begin{gathered}
\sum_{k=1}^{5} k^{2} \\
1+4+9+16+25=55
\end{gathered}
$$

Example 3

$$
\begin{gathered}
\sum_{k=0}^{3} k^{3}-k^{2} \\
0+0+4+18=22
\end{gathered}
$$

Example 4

$$
\sum_{k=1}^{n} 2 k-1=n^{2}
$$

$$
1+3+5+7+\ldots+(2 n-1)
$$

If $n=1$	1	$=1$
If $n=2$	$1+3$	$=4$
If $n=3$	$1+3+5$	$=9$
If $n=4$	$1+3+5+7$	$=16$
If $n=5$	$1+3+5+7+9$	$=25$

Sum of the first n odd integers

$\sum_{k=\text { lower }}^{\text {upper }}$ formula

- Σ means find the sum
- k is a variable that gets plugged into the formula
- k is an integer that starts at the 'lower' summand and goes up one at a time until reaching the 'upper' summand

