Sequences and Recursion

4. University of Minnesota

Preliminaries and Objectives

Preliminaries

- Functions and function notation

Objectives

- Define sequences from an explicit formula
- Define sequences from a recursive formula

Sequences

A sequence is an ordered set of numbers. Typically a sequence is denoted

$$
\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

where the subscript indicates the term in the sequence.

A sequence is an ordered set of numbers. Typically a sequence is an infinite list.

Example 1

The positive even numbers $=\{2,4,6,8,10 \ldots\}$

Example 1

$$
\begin{gathered}
E=\{2,4,6,8,10 \ldots\} \\
\left\{e_{n}\right\}=\{2,4,6,8,10 \ldots\} \\
e_{1}=2, e_{2}=4, e_{3}=6, e_{4}=8
\end{gathered}
$$

$$
e_{24}=48
$$

$$
e_{n}=2 n
$$

Sequences and Functions

$$
\left\{e_{n}\right\}=\{2,4,6,8 \ldots\}
$$

Sequence Notation: $e_{n}=2 n$
Function Notation: $\quad f(x)=2 x$
Equation of a Line: $\quad y=2 x$

Example 2

$$
\begin{gathered}
m_{n}=2^{n}-1 \\
\left\{m_{n}\right\}=\{1,3,7,15,31 \ldots\}
\end{gathered}
$$

Recursion

- Define the first term
- Give a formula to determine the next term from the previous term

The positive even numbers $=\left\{e_{n}\right\}=\{2,4,6,8 \ldots\}$ can be determined from the recursive formula

$$
\begin{gathered}
e_{1}=2 \\
e_{n+1}=e_{n}+2
\end{gathered}
$$

Example 3 - Compound Interest

How much money will you have at the end of each year if you deposit $\$ 100$ at 6% interest, compounded annually?

$$
\left\{d_{n}\right\}=\{\$ 106.00, \$ 112.36, \$ 119.10 \ldots\}
$$

$$
\begin{gathered}
d_{0}=100 \\
d_{n e x t}=1.06 \cdot d_{p r e v} \\
d_{n}=100(1.06)^{n}
\end{gathered}
$$

How much money will you have at the end of 50 years?

$$
d_{50}=\$ 100(1.06)^{50}=\$ 1842.02
$$

Example 4

$$
\begin{gathered}
a_{1}=1 \\
a_{n+1}=3 a_{n}-1 \\
\left\{a_{n}\right\}=\{1,2,5,14,41,122 \ldots\} \\
a_{n}=? ? ?
\end{gathered}
$$

Example 5 - Fibonacci Sequence

$$
\begin{gathered}
f_{1}=1, f_{2}=1, f_{n+2}=f_{n+1}+f_{n} \\
\left\{f_{n}\right\}=\{1,1,2,3,5,8,13,21,34,55,89 \ldots\}
\end{gathered}
$$

Example 6

$$
\begin{gathered}
c_{n}=(-1)^{n} \cdot n \\
\left\{c_{n}\right\}=\{-1,2,-3,4,-5,6 \ldots\}
\end{gathered}
$$

- Explicit definition is formula, much like a function.
- Recursion defines the first term (or first few terms) and a method to calculate later terms based on previous terms.

