Geometric Sequences and Series

4. University of Minnesota

Preliminaries and Objectives

Preliminaries

- Sequences
- Exponential functions

Objectives

- Define a geometric sequence
- Find the sum of an infinite geometric series

Geometric Sequences

A geometric sequence is a sequence of numbers in which the recursion is to multiply by a constant, called the common ratio.

Explicit formula

n	0	1	2	3	4
g_{n}	3	6	12	24	48

As the input n changes by 1 , the output g_{n} doubles

$$
g_{n}=3\left(2^{n}\right)
$$

Example 2

$$
\left\{g_{n}\right\}=9\left\{-3,1,-\frac{1}{3}, \frac{1}{9} \ldots\right\} \quad r=-\frac{1}{3}
$$

Find the nth term.
Find the 5th term.
$g_{n}=9(-1)^{n}\left(\frac{1}{3}\right)^{n}$
$g_{5}=9(-1)^{5}\left(\frac{1}{3}\right)^{5}=-\frac{1}{27}$

Example 3

Find the sum

$$
\begin{aligned}
S & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots+\frac{1}{256} \\
-\left(\frac{1}{2}\right) S & =\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots+\frac{1}{256}+\frac{1}{512} \\
\left(\frac{1}{2}\right) S & =\frac{1}{2}-\frac{1}{512}
\end{aligned}
$$

$$
\left(\frac{1}{2}\right) S=\frac{255}{512}
$$

$$
S=\frac{255}{256}
$$

Example 4

Find the sum

$$
\begin{aligned}
S & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \\
-\left(\frac{1}{2}\right) S & =\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots
\end{aligned}
$$

$$
\left(\frac{1}{2}\right) S=\frac{1}{2}
$$

$$
S=1
$$

Example 5

Find the sum

$$
\begin{array}{r}
S=\frac{3}{2}-\frac{1}{2}+\frac{1}{6}-\frac{1}{18}+\ldots \\
+\left(\frac{1}{3}\right) S=\frac{1}{2}-\frac{1}{6}+\frac{1}{18}+\ldots \\
\left(\frac{4}{3}\right) S=\frac{3}{2} \\
S=\frac{9}{8}
\end{array}
$$

Example 6

Find the sum

$$
S=\frac{3}{5}+\frac{6}{5}+\frac{12}{5}+\frac{24}{5}+\ldots
$$

The terms get larger, so the sum does not exist. The series diverges.

Example 7

Find the sum

$$
\sum_{i=1}^{\infty}\left(-\frac{-9}{2}\right)\left(-\frac{1}{3}\right)^{n}
$$

$$
S=\frac{3}{2}-\frac{1}{2}+\frac{1}{6}-\frac{1}{18}+\ldots
$$

- Explicit formula for a geometric series $g_{n}=g_{0} \cdot r^{n}$
- To find the sum of a geometric series, multiply the series by the common ratio, then subtract.

