Arithmetic Sequences and Series

4星 University of Minnesota

Preliminaries and Objectives

Preliminaries

- Sequences defined by explicit formulas
- Sequences defined by recursive formulas
- Sigma notation
- Slope-intercept form of a line

Objectives

- Define arithmetic sequences
- Find the sum of an arithmetic series

An arithmetic sequence is a sequence of numbers in which the recursion is to add a constant, called the common difference.

Explicit formula

n	0	1	2	3	4
a_{n}	2	5	8	11	14

As the input n changes by 1 , the output a_{n} changes by 3

$$
a_{n}=3 n+2
$$

Example 2

$$
\left\{a_{n}\right\}=-7\{-3,1,5,9,13,17 \ldots\} \quad d=4
$$

Find the nth term.
Find the 23rd term.

$$
\begin{aligned}
& a_{n}=4 n-7 \\
& a_{23}=4(23)-7=85
\end{aligned}
$$

Example 3

If $a_{7}=22$ and $a_{10}=31$, find the nth term.

$$
\begin{aligned}
& d=\frac{31-22}{10-7}=\frac{9}{3}=3 \\
& a_{0}=22-7(3)=1 \\
& \left\{a_{n}\right\}=1\{4,7,10,13,16,19,22, \ldots\} \\
& a_{n}=3 n+1
\end{aligned}
$$

Example 4

Find the sum $S=1+2+3+\ldots+100$

$$
\begin{gathered}
\sum_{n=1}^{100} n \\
S=r+2+3 \ldots+100 \\
S=100+99+98 \ldots+1 \\
\hline 2 S=101+101+101 \ldots+101 \\
2 S=(101)(100) \\
S=\frac{(101)(100)}{2}=5050
\end{gathered}
$$

Example 5

Find the sum $S=2+4+6+\ldots+100$

$$
\begin{aligned}
& \sum_{n=1}^{50} 2 n
\end{aligned}
$$

$$
\begin{aligned}
& 2 S=(102)(50) \\
& S=\frac{(102)(50)}{2}=2550
\end{aligned}
$$

Example 6

Find the sum $S=5+8+11+\ldots+74$
$d=3 \quad a_{0}=2 \quad a_{n}=3 n+2 \quad 74=3 n+2 \quad n=24$

$$
\sum_{n=1}^{24} 3 n+2
$$

$$
\begin{aligned}
S & =5+8+11 \ldots+74 \\
S & =74+71+68 \ldots+5 \\
\hline 2 S & =79+79+79 \ldots+79
\end{aligned}
$$

$$
2 S=(79)(24)
$$

$$
S=\frac{(79)(24)}{2}=948
$$

- Explicit definition of an arithmetic sequence $a_{n}=a_{0}+n d$
- Find the sum of an arithmetic sequence by writing the sum forward and backward and adding vertically.

