Geometric Sequences and Series

University of Minnesota

Geometric Sequences and Series

Preliminaries and Objectives

Preliminaries

- Sequences
- Exponential functions

Objectives

- Define a geometric sequence
- Find the sum of an infinite geometric series

University of Minnesota

Geometric Sequences and Series

Geometric Sequences

A **geometric** sequence is a sequence of numbers in which the recursion is to multiply by a constant, called the *common ratio*.

Explicit formula

As the input n changes by 1, the output g_n doubles

$$g_n = 3(2^n)$$

Example 2

$$\{g_n\} = 9 \{-3, 1, -\frac{1}{3}, \frac{1}{9} \ldots\}$$
 $r = -\frac{1}{3}$

Find the *n*th term.

Find the 5th term.

$$g_n=9(-1)^n(\tfrac{1}{3})^n$$

$$g_5 = 9(-1)^5(\frac{1}{3})^5 = -\frac{1}{27}$$

University of Minnesota

Geometric Sequences and Series

Example 3

Find the sum

$$S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{256}$$
$$-(\frac{1}{2})S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{256} + \frac{1}{512}$$

$$(\frac{1}{2})S = \frac{1}{2} - \frac{1}{512}$$

$$(\frac{1}{2})\mathcal{S} = \frac{255}{512}$$

$$\mathcal{S}=rac{255}{256}$$

University of Minnesota

Geometric Sequences and Series

Example 4

Find the sum

$$S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$-\left(\frac{1}{2}\right)S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$(\frac{1}{2})S = \frac{1}{2}$$

$$S=1$$

Example 5

Find the sum

$$S = \frac{3}{2} - \frac{1}{2} + \frac{1}{6} - \frac{1}{18} + \dots$$

$$+(\frac{1}{3})S = \frac{1}{2} - \frac{1}{6} + \frac{1}{18} + \dots$$

$$\left(\frac{4}{3}\right)S = \frac{3}{2}$$

$$S=\frac{9}{8}$$

Example 6

Find the sum

$$S = \frac{3}{5} + \frac{6}{5} + \frac{12}{5} + \frac{24}{5} + \dots$$

The terms get larger, so the sum does not exist. The series diverges.

University of Minnesota

Geometric Sequences and Series

Example 7

Find the sum

$$\sum_{k=1}^{\infty} \left(-\frac{9}{2} \right) \left(-\frac{1}{3} \right)^k$$

$$S = \frac{3}{2} - \frac{1}{2} + \frac{1}{6} - \frac{1}{18} + \dots$$

University of Minnesota

Geometric Sequences and Series

Recap

- Explicit formula for a geometric series $g_n = g_0 \cdot r^n$
- To find the sum of a geometric series, multiply the series by the common ratio, then subtract.