Sequences

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Recursion

Objectives

- Develop notation for sequences

Example 1 - Powers of 2

$\frac{2}{\text { 1st }} \frac{4}{2 n d} \frac{8}{\text { 3rd }} \frac{16}{4 \text { th }} \frac{32}{5 \text { th }} \frac{64}{6 \text { th }} \frac{128}{7 \text { th }} \ldots 6$ 65536

Tables

Position	Number
1	2
2	4
3	8
4	16
5	32
6	64
7	128
\vdots	\vdots
16	65536
\vdots	\vdots

Example 2 - Fibonacci Numbers

$$
\begin{aligned}
& \begin{array}{l}
1 \\
\\
F_{1}=1 \\
F_{2}=1 \\
F_{3}=2 \\
F_{4}=3 \\
F_{5}=5 \\
F_{6}=8 \ldots
\end{array} \\
& \left\{\begin{array}{l}
2 \\
\end{array}\right. \\
&
\end{aligned}
$$

Example 3 - Even Numbers

n	E_{n}
1	2
2	4
3	6
4	8
5	10
6	12
7	14

$E_{n}=2 n$

Example 4 - Odd Numbers

n	D_{n}
1	1
2	3
3	5
4	7
5	9
6	11
7	13

$$
D_{1}=1, \quad D_{\text {next }}=D_{\text {prev }}+2
$$

Example 4 - Odd Numbers

n	D_{n}
1	1
2	3
3	5
4	7
5	9
6	11
7	13

$D_{1}=1, \quad D_{n+1}=D_{n}+2$

Example 2 - Fibonacci Numbers

$$
\begin{aligned}
& 1 \quad 1 \quad 3 \quad \begin{array}{l}
1 \\
\underline{1} \ldots
\end{array} \\
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n+2}=F_{n+1}+F_{n}
\end{aligned}
$$

Recap

A sequence is an ordered list of numbers

- Explicit Formula - a_{n} is given by a formula involving n
- Recursive Formula - Give the value of the first term, then give a formula for the next term based on previous terms.
- The subscript indicates the location in the sequence

