Sequences

University of Minnesota

Preliminaries and Objectives

Preliminaries

• Recursion

Objectives

Develop notation for sequences

Example 1 - Powers of 2

2 4 8 16 32 64 128 65536 1st 2nd 3rd 4th 5th 6th 7th 65536

Tables

Position	Number
1	2
2	4
3	8
4	16
5	32
6	64
7	128
÷	÷
16	65536
÷	÷

Example 2 - Fibonacci Numbers

Example 3 - Even Numbers

 $E_n = 2n$

University of Minnesota Solution

Example 4 - Odd Numbers

 $\begin{array}{c|c|c} n & D_n \\ \hline 1 & 1 \\ 2 & 3 \\ 3 & 5 \\ 4 & 7 \\ 5 & 9 \\ 6 & 11 \\ 7 & 13 \\ \end{array}$

$$D_1 = 1,$$
 $D_{next} = D_{prev} + 2$

Example 4 - Odd Numbers

 $D_1 = 1$, $D_{n+1} = D_n + 2$

Example 2 - Fibonacci Numbers

$$F_1 = 1$$
 $F_2 = 1$ $F_{n+2} = F_{n+1} + F_n$

Recap

A **sequence** is an ordered list of numbers

- Explicit Formula a_n is given by a formula involving n
- Recursive Formula Give the value of the first term, then give a formula for the next term based on previous terms.
- The subscript indicates the location in the sequence