Examples Using the Properties of Logarithms

University of Minnesota Examples Using the Properties of Logarithms

Preliminaries

- Laws of Logarithms
- Laws of Exponents

Objectives

- Simplify expressions using logarithms
- Solve equations involving logarithms

Laws of Logarithms

$b^m = x$	$\log_b x = m$
$b^n = y$	$log_b y = n$
log _b 1 = 0	$\log_b \frac{1}{x} = -\log_b x$
$\log_b b = 1$	$\log_b xy = \log_b x + \log_b y$
$\log_b b^m = m$	$\log_b \frac{x}{y} = \log_b x - \log_b y$
$b^{\log_b x} = x$	$\log_b x^n = n \cdot \log_b x$

Write $2 \log_{10} 3$ as a single logarithm

$$2\log_{10} 3 = \log_{10} 3^2 = \log_{10} 9$$

Write as a single logarithm

$$\log_{10}7 + \log_{10}4 = \log_{10}(7)(4) = \log_{10}28$$

$$3^{\log_3 10 - \log_3 7}$$

= $3^{\log_3 \frac{10}{7}}$
= $\frac{10}{7}$

Solve for *x*

$$\log_4 x = 2$$

Ans:
$$4^2 = x$$

 $x = 16$

University of Minnesota Examples Using the Properties of Logarithms

Solve for *x*

$\log_{10}(3x+1) = 1$

Ans:
$$10^1 = 3x + 1$$

 $x = 3$

Solve for *x*

$\log_4(x+2) = \log_4 8$

Ans:
$$x + 2 = 8$$

 $x = 6$

Example 11

Solve for *x*

$$\log_{10} 2x - \log_{10} (x - 3) = 1$$

Ans:
$$\log_{10} \frac{2x}{x-3} = 1$$

 $10^1 = \frac{2x}{x-3}$
 $10(x-3) = 2x$
 $10x - 30 = 2x$
 $8x = 30$
 $x = \frac{30}{8}$