Examples Using the Properties of Logarithms

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Laws of Logarithms
- Laws of Exponents

Objectives

- Simplify expressions using logarithms
- Solve equations involving logarithms

Laws of Logarithms

$$
\begin{array}{cc}
b^{m}=x & \log _{b} x=m \\
b^{n}=y & \log _{b} y=n \\
\log _{b} 1=0 & \log _{b} \frac{1}{x}=-\log _{b} x \\
\log _{b} b=1 & \log _{b} x y=\log _{b} x+\log _{b} y \\
\log _{b} b^{m}=m & \log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \\
b^{\log _{b} x}=x & \log _{b} x^{n}=n \cdot \log _{b} x
\end{array}
$$

Example 4

Write $2 \log _{10} 3$ as a single logarithm

$$
2 \log _{10} 3=\log _{10} 3^{2}=\log _{10} 9
$$

Example 5

Write as a single logarithm

$$
\log _{10} 7+\log _{10} 4=\log _{10}(7)(4)=\log _{10} 28
$$

Example 6

$$
\begin{aligned}
& 3 \log _{10} 6-2 \log _{10} 5 \\
& =\log _{10} 6^{3}-\log _{10} 5^{2} \\
& =\log _{10} 216-\log _{10} 25 \\
& =\log _{10} \frac{216}{25} \\
& =\log _{10} 8.64
\end{aligned}
$$

Example 7

$$
\begin{aligned}
& 3^{\log _{3} 10-\log _{3} 7} \\
& =3^{\log _{3} \frac{10}{7}} \\
& =\frac{10}{7}
\end{aligned}
$$

Example 8

Solve for x

$\log _{4} x=2$

Ans: $4^{2}=x$
$x=16$

Example 9

Solve for x

$$
\log _{10}(3 x+1)=1
$$

Ans: $\quad 10^{1}=3 x+1$
$x=3$

Example 10

Solve for x

$$
\log _{4}(x+2)=\log _{4} 8
$$

Ans: $x+2=8$

$$
x=6
$$

Example 11

Solve for x

$$
\log _{10} 2 x-\log _{10}(x-3)=1
$$

$$
\begin{gathered}
\text { Ans: } \log _{10} \frac{2 x}{x-3}=1 \\
10^{1}=\frac{2 x}{x-3}
\end{gathered}
$$

$$
10(x-3)=2 x
$$

$$
10 x-30=2 x
$$

$$
8 x=30
$$

$$
x=\frac{30}{8}
$$

