Newton's Law of Cooling

柦 University of Minnesota

Preliminaries and Objectives

Preliminaries:

- Standard model for exponential growth and decay

$$
A(t)=A_{0} e^{r t}
$$

- Conversion between logaritmic form and exponential form

Objectives:

- Solve problems using Newton's Law of Cooling

Cooling to Room Temperature

Cooling to Room Temperature

Cooling to Room Temperature

Notation

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

- $T^{*}(t)=$ temperature at time t
- $T_{0}^{*}=$ initial temperature
- $t=$ time
- $k=$ rate of decay

Notation

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

- $T^{*}(t)=$ temperature at time t
- $T_{0}^{*}=$ initial temperature
- $t=$ time
- $k=$ rate of decay

$$
\left(T_{t}-T_{m}\right)=\left(T_{0}-T_{m}\right) e^{-k t}
$$

Notation

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

- $T^{*}(t)=$ temperature at time t
- $T_{0}^{*}=$ initial temperature
- $t=$ time
- $k=$ rate of decay

$$
\begin{gathered}
\left(T_{t}-T_{m}\right)=\left(T_{0}-T_{m}\right) e^{-k t} \\
T^{*}(t)=\left(T_{t}-T_{m}\right)
\end{gathered}
$$

Example

A cup of coffee is heated to $80^{\circ} \mathrm{C}$. It is placed in a room whose temperature is $20^{\circ} \mathrm{C}$. After 2 minutes, the temperature has decreased to $60^{\circ} \mathrm{C}$. At what time will the coffee have cooled to $40^{\circ} \mathrm{C}$?

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

Time	Temp
0	80
2	60
$?$	40

Example

A cup of coffee is heated to $80^{\circ} \mathrm{C}$. It is placed in a room whose temperature is $20^{\circ} \mathrm{C}$. After 2 minutes, the temperature has decreased to $60^{\circ} \mathrm{C}$. At what time will the coffee have cooled to $40^{\circ} \mathrm{C}$?

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

Time	Temp above r.t.
0	$80-20=60$
2	$60-20=40$
$?$	$40-20=20$

Example

A cup of coffee is heated to $80^{\circ} \mathrm{C}$. It is placed in a room whose temperature is $20^{\circ} \mathrm{C}$. After 2 minutes, the temperature has decreased to $60^{\circ} \mathrm{C}$. At what time will the coffee have cooled to $40^{\circ} \mathrm{C}$?

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

Time	Temp above r.t.
0	$80-20=60$
2	$60-20=40$
$?$	$40-20=20$

$$
40=60 e^{-2 k} \Rightarrow k \approx 0.20273
$$

Example

A cup of coffee is heated to $80^{\circ} \mathrm{C}$. It is placed in a room whose temperature is $20^{\circ} \mathrm{C}$. After 2 minutes, the temperature has decreased to $60^{\circ} \mathrm{C}$. At what time will the coffee have cooled to $40^{\circ} \mathrm{C}$?

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

Time	Temp above r.t.
0	$80-20=60$
2	$60-20=40$
$?$	$40-20=20$

$$
40=60 e^{-2 k} \Rightarrow k \approx 0.20273
$$

$20=60 e^{-0.20273 t} \Rightarrow t \approx 5.42 \mathrm{~min}$.

Newton's Law of Cooling

$$
T^{*}(t)=T_{0}^{*} e^{-k t}
$$

All temperatures are measured as temperature above room temperature.

Details of Example

$$
\begin{aligned}
& T^{*}(t)=T_{0}^{*} e^{-k t} \\
& \Rightarrow 40=60 e^{-2 k} \\
& \Rightarrow \frac{40}{60}=e^{-2 k} \\
& \Rightarrow \ln \frac{40}{60}=-2 k \\
& \Rightarrow \ln \frac{60}{40}=2 k \\
& \Rightarrow k=\frac{\ln 3 / 2}{2} \\
& \Rightarrow k \approx 0.20273
\end{aligned}
$$

Details of Example

$$
\begin{gathered}
T^{*}(t)=T_{0}^{*} e^{-k t} \\
\Rightarrow 20=60 e^{-0.20273 t} \\
\Rightarrow \frac{20}{60}=e^{-0.20273 t} \\
\Rightarrow \ln \frac{20}{60}=-0.20273 t \\
\Rightarrow \ln 3=0.20273 t \\
\Rightarrow t=\frac{\ln 3}{0.20273} \\
\Rightarrow t \approx 5.42
\end{gathered}
$$

