Preliminaries and Objectives

Preliminaries
- Polynomials
- Graph of \(y = x^2 \)
- Graph Transformations

Objectives
- Find the axis of symmetry of a Parabola
- Find the vertex of a Parabola
- Graph a Parabola

Definitions

A **quadratic function** is a polynomial of degree 2. It has the general form

\[
f(x) = ax^2 + bx + c
\]

General Parabola

\[
y = ax^2 + bx + c
\]

\[
y = \left(x^2 + \frac{b}{a}x \right)
\]

\[
y = x \left(x + \frac{b}{a} \right)
\]

- Shift vertically by \(c \)
- Stretch by a factor of \(a \)
- Find the axis of symmetry

Axis of Symmetry and Vertex

For the parabola defined by the equation \(y = ax^2 + bx + c \)

- The axis of symmetry is \(x = -\frac{b}{2a} \).
- The vertex has an \(x \)-coordinate of \(-\frac{b}{2a}\).
- The \(y \)-coordinate of the vertex can be found by plugging the \(x \)-value \(-\frac{b}{2a}\) into the original equation.

Example

Graph the parabola \(y = 3x^2 - 12x + 7 \)

Axis of symmetry: \(x = -\frac{-12}{2(3)} = 2 \)

Vertex: \((2, -5)\)

Recap

- Axis of symmetry: \(x = -\frac{b}{2a} \)
- Vertex: \(-\frac{b}{2a}, f \left(-\frac{b}{2a} \right) \)
- Stretch factor = \(a \)