Preliminaries and Objectives

The Degree of a Polynomial

University of Minnesota

The Degree of a Polynomial

Preliminaries

- Exponents
- Variables

Objectives

- Polynomials
- Degree of a polynomial

University of Minnesota

The Degree of a Polynomial

Ingredients

Materials

- Real Numbers
- A variable "x"

Operations

- Addition
- Subtraction
- Multiplication

What We Get

4

$$x \qquad \qquad \frac{1}{2}x$$

$$4x \qquad \qquad \frac{1}{2}x^2 + 4x - 3$$

 x^2

$$4x-3$$
 $(x-3)(x-4) = x^2 - 7x + 12$

University of Minnesota

The Degree of a Polynomial

University of Minnesota

The Degree of a Polynomial

Terms

Term

- 1 The product of a real number and x raised to a positive integer power, OR
- 2 a lone real number (called the constant)

Polynomial

A polynomial is the sum of terms

Leading Term

The term of a polynomial with the largest power of x

University of Minnesota

The Degree of a Polynomial

Further Examples

Determine whether or not the given expression is a polynomial. If it is, find the degree.

$$(3x^2-2)(4-x)$$

$$\frac{4}{3}$$

$$\frac{x^2-x-1}{x+3}$$

$$x + 3$$

$$x^2 + x^{-2}$$
 $x^2 + x^4 - 3$

$$x^2 + x^4 - 3$$

Degree of a Polynomial

Degree of a Polynomial

The exponent of the leading term

Examples

$$6x^5 - 12x^4 + x^2 - 7$$
 has degree 5

$$(x+3)(x-4)$$
 has degree 2 since $(x+3)(x-4) = x^2 - 2x - 12$

University of Minnesota

The Degree of a Polynomial