Preliminaries and Objectives

Preliminaries

- Parabolas
- Standard Form
- General Form
- Factor-Root Theorem
- Factoring

Objectives

- Graphing a parabola from root form
- Finding the axis of symmetry and vertex of a parabola in root form

Root Form

Example 1

$$
\begin{gathered}
y=x^{2}-2 x-15 \\
y=(x+3)(x-5)
\end{gathered}
$$

$$
y=a(x-r)(x-s)
$$

r and s are roots of the parabola
roots $=x$-intercepts $=$ zeroes
Axis of symmetry at $x=\frac{r+s}{2}$

Example 2

Graph $y=3 x^{2}+24 x+36$
$y=3\left(x^{2}+8 x+12\right)$
$y=3(x+2)(x+6)$

Axis of symmetry at $x=-4$

Vertex $=(-4,-12)$

Find the vertex of the parabola $y=-4(x-7)(x+3)$

Roots at $x=7$ and $x=-3$
$h=\frac{7-3}{2}=2$
$k=-4(-5)(5)=100$

Vertex at $(2,100)$

Recap

Example 3

Graph $y=-2 x^{2}+x+3$
$y=-\left(2 x^{2}-x-3\right)$
$y=-(2 x-3)(x+1)$

Roots occur where
$2 x-3=0$ and $x+1=0$

Roots at $x=\frac{3}{2}$ and $x=-1$

Root Form of a Parabola

If $y=a(x-r)(x-s)$, then r and s are the roots (x-intercepts) of the parabola.

The axis of symmetry will be at

$$
x=\frac{r+s}{2}
$$

