Completing the Square

Preliminaries and Objectives

Preliminaries

• Expanding binomials like $(x + a)^2$

University of Minnesota

• General form of a circle, ellipse, parabola, hyperbola

Objectives

· Complete the square

University of Minnesota

 $(x-h)^2 + (y-k)^2 = r^2$

 $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

 $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Example 1

Step 5: Write in standard form

$$y^{2} + 4x = 6y - x^{2} + 23$$

$$x^{2} + 4x + 4 + y^{2} - 6y + 9 = 23 + 4 + 9$$

$$(x+2)(x+2) + (y-3)(y-3) = 23 + 13 = 36$$

$$(x+2)^{2} + (y-3)^{2} = 6^{2}$$

$$Goal: (x-h)^{2} + (y-k)^{2} = r^{2}$$

This is a circle with radius = 6, with center at (-2,3)

Example 2

Step 5: Write in standard form

$$y + x^{2} = 8x - 19$$

$$y + 19 + -16 = -x^{2} + 8x + -16$$

$$y + 19 + -16 = -(x^{2} - 8x + 16)$$

$$y + 19 + -16 = -(x - 4)(x - 4)$$

$$y + 3 = -(x - 4)^{2}$$

$$Goal : y - k = A(x - h)^{2}$$

This is a parabola, pointed downward, with vertex at (4, -3)

Example 3

Step 5: Write in standard form

Standard Form of Conic Sections

Standard form of a vertical parabola: $y - k = \pm a(x - h)^2$

Standard form of an horiz. parabola: $x - h = \pm a(y - k)^2$

Standard form of a vertical hyperbola: $\frac{(y-k)^2}{h^2} - \frac{(x-h)^2}{a^2} = 1$

Standard form of a circle:

Standard form of an ellipse:

Standard form of a horiz. hyperbola:

$$4y^{2} + 12x = 9x^{2} + 4y + 39$$

$$4y^{2} - 4y + 1 - 9x^{2} + 12x + -4 = 39 + 1 - 4$$

$$4(y^{2} - y + \frac{1}{4}) - 9(x^{2} - \frac{4}{3}x + \frac{4}{9}) = 39 + -3$$

$$4(y - \frac{1}{2})(y - \frac{1}{2}) - 9(x - \frac{2}{3})(x - \frac{2}{3}) = 39 + -3 = 36$$

$$\frac{(y - \frac{1}{2})^{2}}{9} - \frac{(x - \frac{2}{3})^{2}}{4} = 1$$

Begin with an hyperbola with the y-axis as the transverse axis. The asymptotes have slope $\pm \frac{3}{2}$. The vertices are at (0,3) and (0, -3). This hyperbola is then shifted to the right $\frac{2}{3}$ and up $\frac{1}{2}$

Example 3

$$\frac{y^2}{9} - \frac{x^2}{4} = 1$$

$$\frac{y^2}{9} - \frac{x^2}{4} = 1$$
 $\frac{(y - \frac{1}{2})^2}{9} - \frac{(x - \frac{2}{3})^2}{4} = 1$

Recap

Completing the Square:

- Identify the general form and rearrange terms
- Factor out coefficients on x^2 and y^2
- Determine perfect square
- · Supply missing constants
- Write equation in standard form