Preliminaries and Objectives

Preliminaries
- Parabolas
 - Standard Form
 - General Form
- Factor-Root Theorem
- Factoring

Objectives
- Graphing a parabola from root form
- Finding the axis of symmetry and vertex of a parabola in root form
Example 1

\[y = x^2 - 2x - 15 \]

\[y = (x + 3)(x - 5) \]
\[y = a(x - r)(x - s) \]

\(r \) and \(s \) are roots of the parabola

roots = \(x \)-intercepts = zeroes

Axis of symmetry at \(x = \frac{r + s}{2} \)
Example 2

Graph \(y = 3x^2 + 24x + 36 \)

\[y = 3(x^2 + 8x + 12) \]

\[y = 3(x + 2)(x + 6) \]

Axis of symmetry at \(x = -4 \)

Vertex = \((-4, -12)\)
Example 3

Graph \(y = -2x^2 + x + 3 \)

\[
y = -(2x^2 - x - 3)
\]

\[
y = -(2x - 3)(x + 1)
\]

Roots occur where
\(2x - 3 = 0 \) and \(x + 1 = 0 \)

Roots at \(x = \frac{3}{2} \) and \(x = -1 \)
Example 4

Find the vertex of the parabola $y = -4(x - 7)(x + 3)$

Roots at $x = 7$ and $x = -3$

$$h = \frac{7 - 3}{2} = 2$$

$$k = -4(-5)(5) = 100$$

Vertex at $(2, 100)$
Recap

Root Form of a Parabola

If \(y = a(x - r)(x - s) \), then \(r \) and \(s \) are the roots (\(x \)-intercepts) of the parabola.

The axis of symmetry will be at

\[
x = \frac{r + s}{2}
\]