Root Form of a Parabola

Preliminaries and Objectives

Preliminaries

- Parabolas
 - Standard Form
 - General Form
- Factor-Root Theorem
- Factoring

Objectives

- Graphing a parabola from root form
- Finding the axis of symmetry and vertex of a parabola in root form

$$y=x^2-2x-15$$

$$y=(x+3)(x-5)$$

Root Form

$$y = a(x - r)(x - s)$$

r and s are roots of the parabola

roots = x-intercepts = zeroes

Axis of symmetry at
$$x = \frac{r+s}{2}$$

Graph
$$y = 3x^2 + 24x + 36$$

$$y = 3(x^2 + 8x + 12)$$

$$y = 3(x+2)(x+6)$$

Axis of symmetry at x = -4

$$Vertex = (-4, -12)$$

Graph
$$y = -2x^2 + x + 3$$

$$y = -(2x^2 - x - 3)$$

$$y = -(2x - 3)(x + 1)$$

Roots occur where 2x - 3 = 0 and x + 1 = 0

Roots at
$$x = \frac{3}{2}$$
 and $x = -1$

Find the vertex of the parabola y = -4(x-7)(x+3)

Roots at x = 7 and x = -3

$$h=\frac{7-3}{2}=2$$

$$k = -4(-5)(5) = 100$$

Vertex at (2, 100)

Recap

Root Form of a Parabola

If y = a(x - r)(x - s), then r and s are the roots (x-intercepts) of the parabola.

The axis of symmetry will be at

$$x=\frac{r+s}{2}$$