Optimization Using Parabolas

Preliminaries and Objectives

Preliminaries

- Parabolas
- Axis of Symmetry
- Vertex
- Graph Transformations

Objectives

Find the maximum or minimum value of a quadratic equation

Axis of Symmetry and Vertex

$$y = ax^2 + bx + c$$

Axis of symmetry

$$x=-rac{b}{2a}$$

(This is also the *x*-coordinate of the vertex)

To find the *y*-coordinate of the vertex, plug the *x*-coordinate into the original equation.

Opens Up / Opens Down

If a > 0, the vertex is the minimum

If a < 0, the vertex is the maximum

Credits

Written by: Mike Weimerskirch

Narration: Mike Weimerskirch

Graphic Design: Robert Hank

Example 2

100 feet of fence is to be used to build a rectangular pen. What dimensions will give the maximum area?

$$2x + 2w = 100$$
 $w = 50 - x$
Area $= x(50 - x) = 50x - x^2$

The maximum will occur at the vertex of the parabola $50x - x^2$, so

$$x = -\frac{50}{2(-1)} = 25$$

Therefore w = 50 - 25 = 25 and the area of the pen is (25)(25) = 625 square feet.

