	Preliminaries and Objectives	Zero Product Property
	Preliminaries	(x)(y)=0
The Factor-Root Theorem	Polynomials	
	Factoring	$(0)(\mathbf{y}) = 0$
	Function Notation	(x)(0)= 0
K UNIVERSITY OF MINNESOTA		If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$
	Objectives	$x \neq 0$ and $y \neq 0$, when $xy \neq 0$
	 Definition of root 	Zero Product Property
	Factor polynomials	If $xy = 0$, then $x = 0$ or $y = 0$
University of Minnesota The Factor-Root Theorem	University of Minnesota The Factor-Root Theorem	University of Minnesota The Factor-Root Theorem
Definition of Root	Example 1	Factor-Root Theorem
Let $p(x)$ be a polynomial function, then r is a root of p if $p(r) = 0$	$p(x) = x^2 - 5x + 6$	
	$p(x) = x^2 - 5x + 6$ p(x) = (x - 2)(x - 3)	Factor-Root Theorem
p(r) = 0		• Part I - If $p(x)$ is a polynomial and $(x - r)$ is a factor of
	p(x) = (x - 2)(x - 3) If $x = 2$, then $p(x) = (2 - 2)() = 0$	 Part I - If p(x) is a polynomial and (x - r) is a factor of p(x), then r is a root.
p(r) = 0	p(x) = (x-2)(x-3)	• Part I - If $p(x)$ is a polynomial and $(x - r)$ is a factor of
p(r) = 0 Example: Is $x = 3$ a root of $p(x) = x^2 - 8x + 15$?	p(x) = (x - 2)(x - 3) If $x = 2$, then $p(x) = (2 - 2)() = 0$	 Part I - If p(x) is a polynomial and (x - r) is a factor of p(x), then r is a root.

University of Minnesota The Factor-Root Theorem

Example 2

Factor $p(x) = x^3 - x^2 - 9x - 12$

x = 4 is a root since $p(4) = 4^3 - 4^2 - 9(4) - 12 = 0$, therefore (x - 4) is a factor.

 $p(x) = x^3 - x^2 - 9x - 12 = (x - 4)(x^2 + 3x + 3)$

Example 3

Let $p(x) = x^3 + 5x^2 + 2x - 8$. Check to see which of the following are roots. $\{-4, -2, -1, 1, 2, 4\}$. Factor p(x).

The three roots are -4, -2 and 1, therefore p(x) = (x+4)(x+2)(x-1)

Recap

Definition of Root Let p(x) be a polynomial function, then *r* is a **root** of *p* if p(r) = 0

University of Minnesota The Factor-Root Theorem

Factor-Root Theorem

- **Part I** If p(x) is a polynomial and (x r) is a factor of p(x), then r is a root.
- **Part II** If *r* is a root of p(x), then (x r) is a factor of p(x).

University of Minnesota The Factor-Root Theorem