The Factor-Root Theorem

Preliminaries
- Polynomials
- Factoring
- Function Notation

Objectives
- Definition of root
- Factor polynomials

Example 1

Let \(p(x) \) be a polynomial function, then \(r \) is a root of \(p \) if \(p(r) = 0 \)

Example: Is \(x = 3 \) a root of \(p(x) = x^2 - 8x + 15 \)?

Plug in the value to find \(p(3) = 3^2 - 8(3) + 15 = 0 \)

Since \(p(3) = 0 \), then \(x = 3 \) is a root of \(p(x) \)

Example 2

Factor \(p(x) = x^3 - x^2 - 9x - 12 \)

\(x = 4 \) is a root since \(p(4) = 4^3 - 4^2 - 9(4) - 12 = 0 \), therefore \(x - 4 \) is a factor.

\[p(x) = x^3 - x^2 - 9x - 12 = (x - 4)(x^2 + 3x + 3) \]

Example 3

Let \(p(x) = x^3 + 5x^2 + 2x - 8 \).

Check to see which of the following are roots.
\(-4, -2, -1, 1, 2, 4\).

Factor \(p(x) \).

The three roots are \(-4, -2 \) and \(1 \), therefore
\[p(x) = (x + 4)(x + 2)(x - 1) \]

Recap

Definition of Root

Let \(p(x) \) be a polynomial function, then \(r \) is a root of \(p \) if \(p(r) = 0 \)

Factor-Root Theorem

- **Part I** - If \(p(x) \) is a polynomial and \((x - r) \) is a factor of \(p(x) \), then \(r \) is a root.
- **Part II** - If \(r \) is a root of \(p(x) \), then \((x - r) \) is a factor of \(p(x) \).