The Factor-Root Theorem

2. University of Minnesota

University o Minesosta	The Facior-foot Theorem
Definition of Root	

Let $p(x)$ be a polynomial function, then r is a root of p if $p(r)=0$

Example: Is $x=3$ a root of $p(x)=x^{2}-8 x+15$?

Plug in the value to find $p(3)=3^{2}-8(3)+15=0$

Since $p(3)=0$, then $x=3$ is a root of $p(x)$

	University of Minessota
The Factor-Root Theorem	
Example 2	

Factor $p(x)=x^{3}-x^{2}-9 x-12$
$x=4$ is a root since $p(4)=4^{3}-4^{2}-9(4)-12=0$,
therefore $(x-4)$ is a factor.
therefore $(x-4)$ is a factor.
$p(x)=x^{3}-x^{2}-9 x-12=(x-4)\left(x^{2}+3 x+3\right)$

Preliminaries

- Polynomials
- Factoring
- Function Notation

Objectives

- Definition of root
- Factor polynomials

Example 1

$p(x)=x^{2}-5 x+6$
$p(x)=(x-2)(x-3)$

If $x=2$, then $p(x)=(2-2)(\ldots)=0$
If $x=3$, then $p(x)=(\ldots)(3-3)=0$

If $p(x)=(x-2)(x-3)=0$, then $x-2=0$ or $x-3=0$

	Univeristy of Minesosta
	The Facior-Root Theorem
Example 3	

Example 3

Let $p(x)=x^{3}+5 x^{2}+2 x-8$.
Check to see which of the following are roots.
$\{-4,-2,-1,1,2,4\}$.
Factor $p(x)$.

The three roots are $-4,-2$ and 1 , therefore $p(x)=(x+4)(x+2)(x-1)$

$$
\begin{aligned}
& (x)(y)=0 \\
& (0)(y)=0 \\
& (x)(0)=0
\end{aligned}
$$

$$
\text { If } x \neq 0 \text { and } y \neq 0 \text {, then } x y \neq 0
$$

Zero Product Property

If $x y=0$, then $x=0$ or $y=0$

- Part I - If $p(x)$ is a polynomial and $(x-r)$ is a factor of

Part 1 - If $p(x)$ is a poly
$p(x)$, then r is a root.

- Part II - If r is a root of $p(x)$, then $(x-r)$ is a factor of $p(x)$.

University of Minnesta	The Factor-Root Theorem
Recap	

Definition of Root

Let $p(x)$ be a polynomial function, then r is a root of p if $p(r)=0$

Factor-Root Theorem

- Part I - If $p(x)$ is a polynomial and $(x-r)$ is a factor of $p(x)$, then r is a root.
- Part II - If r is a root of $p(x)$, then $(x-r)$ is a factor of $p(x)$.

