Parallel and Perpendicular Lines

University of Minnesota

Parallel and Perpendicular Lines

Parallel Lines

Preliminaries and Objectives

Preliminaries

- Slope-Intercept Form of a Line
- Point-Slope Form of a Line

Objectives

- Find the equation of a line through a given point parallel to a given line.
- Find the equation of a line through a given point perpendicular to a given line.

University of Minnesota

Parallel and Perpendicular Lines

Definition of Parallel

Two lines are **parallel** if they have the same slope.

University of Minnesota Parallel and Perpendicular Lines University of Minnesota Parallel and Perpendicular Lines

Recap

- If two lines are **parallel**, their slopes are equal.
- If two lines are **perpendicular**, their slopes are negative reciprocals.

That is, if a line has slope m, then a line perpendicular to it has slope $-\frac{1}{m}$

University of Minnesota

Parallel and Perpendicular Lines

Recap

- If two lines are **parallel**, their slopes are equal.
- If two lines are **perpendicular**, their slopes are negative reciprocals.

That is, if a line has slope m, then a line perpendicular to it has slope $-\frac{1}{m}$

Perpendicular Lines

Find the equation of the line perpendicular to the line 3x - 2y = 7 through the point (-1, 6)

$$3x - 2y = 7 \Rightarrow 3x - 7 = 2y$$

 $\Rightarrow \frac{3}{2}x - \frac{7}{2} = y$
 $\Rightarrow m_{\perp} = -\frac{2}{3}$

Answer: $y - 6 = -\frac{2}{3}(x + 1)$

University of Minnesota

Parallel and Perpendicular Lines