Factoring: Grouping

Preliminaries and Objectives

Preliminaries

- Distributive Property
- Expanding Binomials (FOIL)
- Factoring: Greatest Common Factors
- Factoring: Difference of Squares

Objectives

Factor by grouping

$$(x^2+9)(x-2)=x^3-2x^2+9x-18$$

$$(x^{2}+9)(x-2)$$

$$x^{2}$$

$$+9$$

$$9x -18$$

Factor
$$4x^3 - 10x^2 + 6x - 15$$

$$(2x^2+3)(2x-5)$$

Factor
$$4x^3 + 16x^2 - 9x - 36$$

$$(4x^2-9)(x+4)$$

$$(2x+3)(2x-3)(x+4)$$

$$9 -9x -36$$

Factor
$$3x^4 - 9x^3 + 6x^2 - 18x$$

$$(3x)(x^3-3x^2+2x-6)$$

$$(3x)(x^2+2)(x-3)$$

$$x -3$$
 x^{2}
 x^{3}
 x^{3}
 x^{3}
 x^{2}
 x^{3}
 x^{4}

Exercises

$$2x^3 - 14x^2 + 3x - 21 = (2x^2 + 3)(x - 7)$$

$$x^3 + 5x^2 - 9x - 45 = (x+3)(x-3)(x+5) + 10$$

$$4x^4 - 28x^3 + 6x^2 - 42x = 2x(2x^2 + 3)(x - 7)$$

Recap

Grouping

- Remove the greatest common factor
- Create grid and find the common factor in each row and column
- If possible, continue factoring with other techniques, such as the difference of squares

Credits

Written by: Mike Weimerskirch

Narration: Mike Weimerskirch

Graphic Design: Toni Owens

Copyright Info

© The Regents of the University of Minnesota & Mike Weimerskirch For a license please contact http://z.umn.edu/otc