```
Algebra
Activity 5e - The Quadratic Formula, Three Different Ways
```

This activity asks you to show that the roots of the parabola in general form $y=a x^{2}+b x+c$ are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. In most text books, this is stated as:

The solutions to the equation $a x^{2}+b x+c=0$ are given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. Verfying the formula by substitution

(a) Beginning with the root form of a parabola $y=a(x-r)(x-s)$ where r and s are the roots, expand to express the parabola in general form $y=a x^{2}+b x+c$. Express the coefficients a, b and c in terms of a, r and s.

$$
a=\quad b=\quad c=
$$

(b) Verify that the roots r and s are given by the quadratic formula

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

by substituting the expressions found above and simplifying. When you have fully simplified the expression, you should get the answers r and s

Hint: An intermediate step in the simplification will be

$$
\frac{s+r \pm \sqrt{(s-r)^{2}}}{2}
$$

2. Completing the square

Complete the square to solve the equation $a x^{2}+b x+c=0$
There are several approaches which can be found online. One such approach is to perform the following steps:

- Move the constant c to the right side.
- Divide both sides by a.
- Supply the missing constant to be able to factor $x^{2}+\frac{b}{a} x+\ldots$ as a perfect square. Make sure you add this constant to both sides.
- Simplify the right side by finding a common denominator.
- Factor the left side as a perfect square.
- Take a square root on both sides.
- Solve for x

Algebra
Activity 5e - The Quadratic Formula, Three Different Ways

3. Quadratic Formula from Standard Form

(a) Solve the equation

$$
a(x-h)^{2}+k=0
$$

(b) Expand the standard form $y=a(x-h)^{2}+k$ to express the parabola in general form $y=a x^{2}+b x+c$. Express the coefficients a, b and c as functions of a, h and k.

$$
a=\quad b=\quad c=
$$

(c) Solve the above set of equations for a, h and k as functions of a, b and c.
$a=$
$h=$

$$
k=
$$

(d) Substitute the expressions in part c) into the solution from part a) and simplify.

