```
Algebra
Activity 5c - Parabolas: Root Form
```

Another important feature of many functions is where the function crosses the x-axis (the x intercepts). Note that x-intercepts are also called roots of the function and also called zeroes of the function since they are solutions to the equation $f(x)=0$. This activity makes connections between the roots and the other forms of a parabola (the graph, the standard form and the general form).

Part I - $a=1$
Suppose $y=(x-r)(x-s) ; r$ and s are called roots of the equation.

1. Verify that if $x=r$, then $y=0$ and that if $x=s$, then $y=0$. This verifies that r and s are x-intercepts.
2. Expand the root form $y=(x-r)(x-s)$ to arrive at the general form $y=x^{2}+b x+c$. Express b and c in terms of r and s.
3. Knowing a formula for h in terms of b, namely $h=-\frac{b}{2 a}$, which in this case becomes $h=-\frac{b}{2}$ since $a=1$, express h in terms of r and s. Why does this make sense as a result of the symmetry of the graph of the parabola?

4. Let d be the distance from the axis of symmetry to the roots. Explain why the x-intercepts are a vertical distance of d^{2} higher than the vertex. In terms of d, what is the value of k ? Also express k as a function of r and s.

Algebra
Activity 5c - Parabolas: Root Form
Part II - Arbitrary values of a
Suppose $y=a(x-r)(x-s)$

1. Expand the root form $y=a(x-r)(x-s)$ to arrive at the general form $y=a x^{2}+b x+c$. Express a, b and c in terms of a, r and s.
2. Knowing a formula for h in terms of a and b, namely $h=-\frac{b}{2 a}$, express h in terms of a, r and s.

3. Let d be the distance from the axis of symmetry to the roots. How far above the vertex are the x-intercepts? This is similar to question 4 of Part I, except this graph is stretched by a factor of a. Express k as a function of a and d.
4. Express d as a function of a and k.
5. From the picture, it should be clear that the two roots r and s are $h \pm d$. Express the roots in terms of a, h and k.
6. Knowing formulas for h and k in terms of a, b, and c, express the roots in terms of a, b and c.
