Algebra Activity 5a - Transformations of Functions and their Graphs

In order to do this activity, you will need a device to draw graphs, such as the graphing tool on desmos.com

- 1. Translations
 - Group 1: Graph $y = x^2$, $y = x^2 + 4$, $y = x^2 2$ and $y = (x 1)^2$
 - Group 2: Graph $y = \sqrt{x}$, $y = \sqrt{x+3}$ and $y = \sqrt{x-1}$
 - Group 3: Graph $y = \ln x$, $y = \ln(x 4)$ and $y = \ln(x + 3)$
 - For the function $y = (x+C)^2 + D$, what effect will adding D to a function value have on a graph? What effect will adding C to the input value (x) before applying the function have on the graph?
 - If you know what the graph of $y = \sin x$ looks like, can you describe what the graph of $y = (\sin x) + 4$ and $y = \sin(x \frac{\pi}{4})$ look like?
- 2. Reflections
 - Group 1: Graph $y = \sqrt{x}$, $y = \sqrt{-x}$, $y = -\sqrt{x}$ and $y = -\sqrt{-x}$
 - Group 2: Graph $y = \ln x$, $y = \ln(-x)$, $y = -\ln x$ and $y = -\ln(-x)$
 - Group 3: Graph $y = e^x$, $y = e^{-x}$, $y = -e^x$ and $y = -e^{-x}$
 - What effect will placing a negative sign in front of the function value do to the graph? What effect will placing a negative sign on the input value before applying the function have on the graph?
 - Why do the graphs of $y = x^2$ and $y = (-x)^2$ look the same? Give two reasons, one by simplifying the second equation algebraically, the second by interpreting the effect of the negative sign on the graph.
 - If you know what the graph of $y = \sin x$ looks like, can you describe what the graph of $y = -\sin x$ and $y = \sin(-x)$ look like?

- 3. Magnifications
 - Group 1: Graph $y = \sqrt{1 x^2}$, $y = 4\sqrt{1 x^2}$ and $y = \sqrt{1 (3x)^2}$
 - Group 2: Graph $y = \arcsin x$, $y = 2 \arcsin x$ and $y = \arcsin(2x)$
 - Group 3: Graph $y = \arctan x$, $y = 2 \arctan x$ and $y = \arctan(3x)$
 - For the function $y = A \arcsin(Bx)$, what effect will multiplying A to a function value have on a graph? What effect will multiplying B to the input value (x) before applying the function have on the graph?
 - If you know what the graph of $y = \sin x$ looks like, can you describe what the graph of $y = A \sin x$ and $y = \sin(Bx)$ look like?

4. Summary

Given the graph of a function y = f(x) and the transformed graph $y = \pm A \cdot f(\pm Bx + C) + D$:

- Which things in the transformation effect the graph horizontally (left and right) and which effect the graph vertically (top and bottom)?
- How does a multiplier effect the graph? a minus sign? a number added?
- If you know the graph of y = f(x), how can you find the graph of y = -5f(4x) 3?