```
Algebra
Activity 4b - Slope and Equations of Lines
```

Let L be the line that contains the point $(-4,-2)$ and has a slope of $m=\frac{1}{3}$

1. Find three other points on the line.

Describe how you found them.
2. - There is a point on the line L, with a y-coordinate of 4 , find the x-coordinate.

- There is a point on the line L, with a y-coordinate of 3 , find the x-coordinate.
- There is a point on the line L, with a y-coordinate of 2 , find the x-coordinate.

Describe the process to find the x-coordinate, if you are given the y-coordinate.
3. - There is a point on the line L, with an x-coordinate of 2 , find the y-coordinate.

- There is a point on the line L, with an x-coordinate of 1 , find the y-coordinate.
- There is a point on the line L, with an x-coordinate of 0 , find the y-coordinate.

Describe the process to find the y-coordinate, if you are given the x-coordinate.
4. Write an equation, using the slope formula, which says that the slope between the point $(-4,-2)$ and the arbitrary point (x, y) is $\frac{1}{3}$.
Then, solve this equation for y.
Also solve this equation for x.
Do these equations match the descriptions in parts 3) and 2) above?
5. Find the y-intercept of the line that passes through the point $(-4,-2)$ and has a slope of $m=\frac{1}{3}$
6. Find the y-intercept of the line that passes through the point (h, k) and has a slope of m

Algebra

Activity 4b - Slope and Equations of Lines
Part II

In order for three points, A, B and C to be on a straight line, the slope from A to B must equal the slope from B to C, must equal the slope from A to C. However, we don't actually need to check all three. If the slope from A to B equals the slope from B to C, then it must also equal the slope from A to C. Show that this last statement is true by doing the following:

1. Write a formula for the slope from A to B in the picture above.
2. Write a formula for the slope from B to C in the picture above.
3. Set the two expressions above equal to each other. Solve this equation for y to arrive at the slope-intercept form of the equation for this line.
4. Write a formula for the slope from A to C in the picture above.
5. Set the expression in (4) equal to the expression in (2). Solve this equation for y to arrive at the slope-intercept form of the equation for this line.
