MATH 1051 - Slopes and Parabolas

We begin by examining the slope between two points on the parabola $y = x^2$. Some of the points on the parabola are (0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)

- 1. Find the slope between ...
 - (a) the point (2, 4) and the point (5, 25)
 - (b) the point (2, 4) and the point (4, 16)
 - (c) the point (2, 4) and the point (3, 9)
 - (d) the point (2, 4) and the point (1, 1)

Can you guess a simple formula to calculate the slope between (2, 4) and an arbitrary point on the parabola?

What is the slope between the point (2, 4) and the point (2, 4)?

- 2. Suppose the second point on the parabola is unknown, that is, suppose that the second point is (x, x^2) and that we wish to find the slope between the point (2, 4) and the point (x, x^2) .
 - Use the slope formula to write an expression for the slope between these two points.
 - Factor and cancel to simplify this formula.
 - Does this formula agree with what you guessed in part 1?
- 3. Find the slope between ...
 - (a) the point (3, 9) and the point (5, 25)
 - (b) the point (3,9) and the point (4,16)
 - (c) the point (3,9) and the point (2,4)
 - (d) the point (3,9) and the point (1,1)

Can you guess a simple formula to calculate the slope between (3, 9) and an arbitrary point on the parabola?

- 4. Find the slope between ...
 - (a) the point (4, 16) and the point (5, 25)
 - (b) the point (4, 16) and the point (3, 9)
 - (c) the point (4, 16) and the point (2, 4)
 - (d) the point (4, 16) and the point (1, 1)

Can you guess a simple formula to calculate the slope between (4, 16) and an arbitrary point on the parabola?

- 5. Can you guess what the slope is between any two points on a parabola?
- 6. Suppose both points on the parabola are unknown, that is, suppose that the second point is (x, x^2) and that the first fixed point is (h, h^2) . We wish to find the slope between the point (h, h^2) and the point (x, x^2) .
 - Use the slope formula to write an expression for the slope between these two points.
 - Factor and cancel to simplify this formula.
 - Does this formula agree with what you guessed in part 5?