Algebra
 Activity 2c - Geometric Sequences

In this activity, assume that all patterns are formed by multiplying the same number to get from one term to the next. This list of numbers is called a geometric progression or a geometric sequence. The pattern of growth is called exponential growth.

1. Find the missing term in the sequence $\{1,2,4,8, \ldots, 32,64,128, \ldots\}$
2. Find the next term in the sequence $\{5,50,500,5000, \ldots, \ldots\}$

What is the minimal amount of information you need to know in order to answer a question of this type?
3. Find the next term in the sequence $\{3,12, \ldots, \ldots\}$
4. Find the first term in the sequence $\{-,-, 12,18, \ldots, \ldots\}$
5. Fill in the blank: $\{1, \ldots, 25, \ldots\}$
6. Fill in the blank: $\{1, \ldots, 9, \ldots\}$

In general, if the first term of a geometric series is 1 , what do you call the second term if you know the third term?
7. Fill in the blank: $\{1, \ldots, 2, \ldots\}$
8. Fill in the blanks: $\left\{-,-, 1, _,-, 2 \sqrt{2}, __{-}, \ldots\right\}$
9. Fill in the blanks: $\left.\left\{__{-},\right]_{-}, __{-}, 8, \ldots, \ldots\right\}$
10. Fill in the blanks: $\{1,-\ldots,-, \quad, \quad-, x,-, \ldots\}$

In general, if the first term of a geometric series is 1 and the $n^{\text {th }}$ term is x, what is the second term?
11. You invest $\$ 100$ initially with interest compounded annually. After 10 years, your investment has grown to $\$ 200$. What was the annual interest rate?

