Parametric Equations

4星 University of Minnesota

Preliminaries and Objectives

Preliminaries

- Equations of lines, including point-slope form
- Equations of circles and ellipses
- The sin and cos functions and the unit circle

Objectives

- Analyze functions and graphs where x and y are defined as functions of time.

Graphs of Functions

Graph of a Circle

Graph of a Circle

$$
x(t)=\cos t \quad y(t)=\sin t
$$

Parametric Equation of an Ellipse

$$
x=5 \cos t \quad y=3 \sin t
$$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

Parametric Equation of a Circle

$$
\begin{aligned}
& x=\cos t ; \quad y=\sin t \\
& \quad \text { for } 0 \leq t \leq 2 \pi
\end{aligned}
$$

$$
\begin{gathered}
x=\cos 2 t ; \quad y=\sin 2 t \\
\text { for } 0 \leq t \leq \pi
\end{gathered}
$$

$$
\begin{aligned}
& x=\sin t ; \quad y=\cos t \\
& \quad \text { for } 0 \leq t \leq 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& x=\cos t ; \quad y=\sin t \\
& \quad \text { for } 0 \leq t \leq 4 \pi
\end{aligned}
$$

Parametric Equation of an Ellipse

$$
x=2+4 \cos t \quad y=3+2 \sin t
$$

Parametric Equation of a Line

$$
x=1+3 t ; \quad y=-2+5 t
$$

$$
m=\frac{5}{3} \quad \text { Goes through the point }(1,-2)
$$

Point-slope form: $(y+2)=\frac{5}{3}(x-1)$

Parametric Equation of a Line Segment

$$
x=1+3 t ; \quad y=-2+5 t
$$

$$
0 \leq t \leq 4
$$

Connects $(1,-2)$ to $(13,18)$

Parametric Equation of a Line Segment

Write the parametric equations of a line segment that begins at the point $(3,-2)$ at time $t=0$ and ends at the point $(-12,8)$ at time $t=5$.

Solution: The point moves a distance of $-12-3=-15$ in the x-direction, so the speed in the x-direction is $\frac{-15}{5}=-3$. The point moves a distance of $8-(-2)=10$ in the y-direction, so the speed in the y-direction is $\frac{10}{5}=2$. The equations are therefore

$$
\begin{gathered}
x(t)=-3 t+3 \\
y(t)=2 t-2 \\
\text { for } 0 \leq t \leq 5
\end{gathered}
$$

Parametric Form of Functions

$$
x=t ; \quad y=t^{2}
$$

$$
y=x^{2}
$$

Solve one variable for t, substitute in other variable equation.

$$
\begin{gathered}
x=3 t^{2}+4 \quad y=2 t-4 \\
\frac{y+4}{2}=t \\
x=3\left(\frac{y+4}{2}\right)^{2}+4 \\
x-4=\frac{3}{4}(y+4)^{2}
\end{gathered}
$$

- Plot a parametric graph by picking values for t to find points (x, y).
- Given $y=f(x)$, then let $x=t$ to get parametric equations.
- Given parametric equations, solve for t and substitute into other equation to get $y=f(x)$.

