Parametric Equations

University of Minnesota Parametric Equations

Preliminaries

- Equations of lines, including point-slope form
- Equations of circles and ellipses
- The *sin* and *cos* functions and the unit circle

Objectives

• Analyze functions and graphs where *x* and *y* are defined as functions of time.

Graphs of Functions

Graph of a Circle

Graph of a Circle

 $x(t) = \cos t$ $y(t) = \sin t$

Parametric Equation of an Ellipse

Parametric Equation of a Circle

$$x = \cos t;$$
 $y = \sin t$
for $0 \le t \le 2\pi$

$$x = \cos 2t;$$
 $y = \sin 2t$
for $0 \le t \le \pi$

$$x = \sin t;$$
 $y = \cos t$
for $0 \le t \le 2\pi$

$$x = \cos t;$$
 $y = \sin t$
for $0 \le t \le 4\pi$

Parametric Equation of an Ellipse

$$x = 2 + 4 \cos t$$
 $y = 3 + 2 \sin t$

Parametric Equation of a Line

$$x = 1 + 3t;$$
 $y = -2 + 5t$

$$m = \frac{5}{3}$$
 Goes through the point (1, -2)

Point-slope form:
$$(y+2) = \frac{5}{3}(x-1)$$

Parametric Equation of a Line Segment

$$x = 1 + 3t;$$
 $y = -2 + 5t$
 $0 \le t \le 4$

Connects (1, -2) to (13, 18)

Write the parametric equations of a line segment that begins at the point (3, -2) at time t = 0 and ends at the point (-12, 8) at time t = 5.

Solution: The point moves a distance of -12 - 3 = -15 in the *x*-direction, so the speed in the *x*-direction is $\frac{-15}{5} = -3$. The point moves a distance of 8 - (-2) = 10 in the *y*-direction, so the speed in the *y*-direction is $\frac{10}{5} = 2$. The equations are therefore

$$x(t) = -3t + 3$$

 $y(t) = 2t - 2$
for $0 \le t \le 5$

Parametric Form of Functions

$$x = t;$$
 $y = t^2$

$$y = x^2$$

University of Minnesota Parametric Equations

Functions from Parametric Form

Solve one variable for *t*, substitute in other variable equation.

$$x = 3t^2 + 4 \qquad y = 2t - 4$$
$$\frac{y + 4}{2} = t$$

$$x=3\left(\frac{y+4}{2}\right)^2+4$$

$$x-4=\frac{3}{4}(y+4)^2$$

- Plot a parametric graph by picking values for *t* to find points (*x*, *y*).
- Given y = f(x), then let x = t to get parametric equations.
- Given parametric equations, solve for *t* and substitute into other equation to get y = f(x).