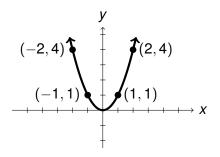
General Equation of a Parabola

Preliminaries and Objectives

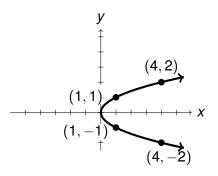
Preliminaries


- Graph of $y = x^2$
- Transformation of Graphs
 - Shifting graphs
 - Stretching graphs
 - Flipping graphs

Objectives

Find the equation of a parabola, given the graph.

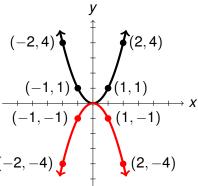
Standard Parabola



Axis of symmetry = y-axis

Vertex at (0,0)

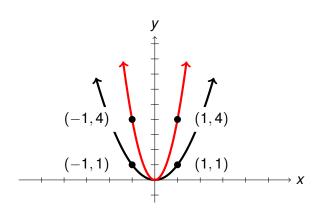
Standard Parabola - Horizontal Orientation



Axis of symmetry = x-axis

Vertex at (0,0)

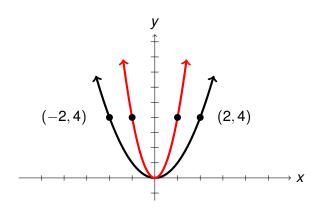
Standard Parabola and Reflection



$$y = -x^2$$

Stretching Parabolas

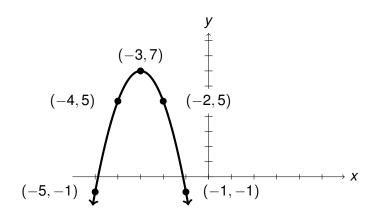
$$y = x^2$$


$$y=4(x^2)$$

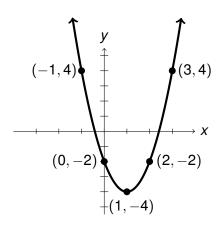
Stretching Parabolas

$$y = x^2$$

$$y=(2x)^2$$


General Form of a Parabola

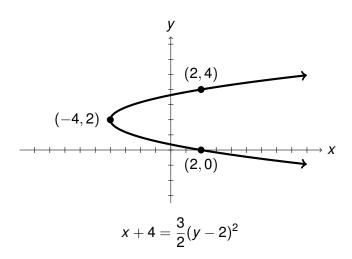
$$y - k = \pm A(x - h)^2$$


Vertex at (h, k), streched vertically by a factor of A, and reflected across the x-axis if negative.

Example 1

$$y = -2(x+3)^2 + 7$$
$$y - 7 = -2(x+3)^2$$

Example 2


$$y + 4 = 2(x - 1)^2$$

General Form of a Parabola - Horizonal Orientation

$$x - h = \pm A(y - k)^2$$

Vertex at (h, k), streched horizontally by a factor of A, and reflected across the y-axis if negative.

Example 3

Recap

Standard Equation of a Parabola

$$y - k = \pm A(x - h)^2$$
 and $x - h = \pm A(y - k)^2$

Form of the parabola

$$y = x^2$$
 opens upward
 $y = -x^2$ opens downward
 $x = y^2$ opens to the right
 $x = -y^2$ opens to the left

- Vertex at (h, k)
- Stretched by a factor of A vertically for $y = x^2$ and horizontally for $x = y^2$