General Equation of a Hyperbola

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Transformation of graphs (shifting and stretching)

Objectives

- Graph a hyperbola, given the equation.
- Find the equation of a hyperbola, given the graph.

Ellipse Centered at the Origin

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The unit circle is stretched a times wider and b times taller.

Standard Hyperbola

$$
x^{2}-y^{2}=1
$$

Standard Hyperbola - Vertical

$$
y^{2}-x^{2}=1
$$

Stretched Hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The hyperbola is stretched a times wider and b times taller.

Stretched Hyperbola

$$
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
$$

Writing the equation from the graph

$$
(\quad)^{2}-(\quad)^{2}=1
$$

Writing the equation from the graph

$$
\frac{(x-2)^{2}}{9}-\frac{(y+1)^{2}}{25}=1
$$

Center at $(2,-1)$

General Equation of a Hyperbola- Horizontal

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Center at (h, k)
Asymptotes have slope $\pm \frac{b}{a}$ and pass through the center
Vertices at $(h+a, k),(h-a, k)$

General Equation of a Hyperbola - Vertical

$$
\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1
$$

Center at (h, k)
Asymptotes have slope $\pm \frac{b}{a}$ and pass through the center
Vertices at $(h, k+b),(h, k-b)$

