Solving Trig Equations - Part I

University of Minnesota

Solving Trig Equations - Part I

Preliminaries and Objectives

Preliminaries

- Unit circle values in degrees and radians
- Inverse trig functions
- Algebraic techniques for solving polynomial equations

Objectives

• Find all solutions to a trigonometric equation.

University of Minnesota

Solving Trig Equations - Part I

Example 1

Find all angles θ such that

$$\sin\theta = -\frac{\sqrt{3}}{2}$$

$$\theta = \{ \dots -120^{\circ}, -60^{\circ}, 240^{\circ}, 300^{\circ}, 600^{\circ}, 660^{\circ} \dots \}$$

Example 1 in radians

Find all angles θ such that

$$\sin\theta = -\frac{\sqrt{3}}{2}$$

$$heta = \left\{ \ldots - \frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{10\pi}{3}, \frac{11\pi}{3} \ldots \right\}$$

Example 2

Find all angles θ such that

$$3\sin\theta - 2 = -\frac{1}{2}$$

$$3x - 2 = -\frac{1}{2}$$

$$3x - 2 = -\frac{1}{2}$$

$$3\sin\theta=\frac{3}{2}$$

$$3x = \frac{3}{2}$$

$$\sin \theta = \frac{1}{2}$$

$$X=\frac{1}{2}$$

$$\theta = \left\{ \dots - \frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6} \dots \right\}$$

University of Minnesota

Solving Trig Equations - Part I

Example 3

Find all angles θ such that

$$\tan^2\theta=3$$

$$x^2 = 3$$

$$\tan \theta = \pm \sqrt{3} \qquad \qquad x = \pm \sqrt{3}$$

$$x = \pm \sqrt{3}$$

$$\theta = \left\{ \dots - \frac{4\pi}{3}, -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}, \frac{10\pi}{3} \dots \right\}$$

University of Minnesota

Solving Trig Equations - Part I

Example 4

Find all angles θ such that

$$2\sin^2\theta + \sin\theta - 1 = 0$$

$$2x^2 + x - 1 = 0$$

$$(2\sin\theta - 1)(\sin\theta + 1) = 0$$
 $(2x - 1)(x + 1) = 0$

$$(2x-1)(x+1)=0$$

$$(2\sin\theta - 1) = 0 \text{ or } (\sin\theta + 1) = 0$$
 $2x - 1 = 0 \text{ or } x + 1 = 0$

$$2x - 1 = 0$$
 or $x + 1 = 0$

$$2\sin\theta = 1 \text{ or } \sin\theta = -1 \qquad 2x = 1 \text{ or } x = -1$$

$$2x = 1 \text{ or } x = -1$$

$$\sin \theta = \frac{1}{2}$$
 or $\sin \theta = -1$

$$x = \frac{1}{2} \text{ or } x = -1$$

$$\theta = \left\{ \dots - \frac{11\pi}{6}, -\frac{7\pi}{6}, -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{7\pi}{2} \dots \right\}$$

Recap

- Solve the trig equation to find the numerical values for the trig functions
- Look up the angles from the unit circle
- Add and subtract full circles as necessary