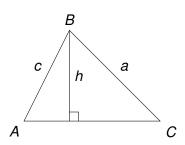
Solving Triangles Using the Law of Sines - Part I

Preliminaries and Objectives

Preliminaries:

- Geometric definition of the sine function.
- Geometric proofs that triangles are congruent (ASA, AAS, SSS, SAS)


Objectives:

- Derive the Law of Sines
- Given three parts of a triangle (ASA or ASA), find the missing three parts.

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\sin C = \frac{h}{a} \qquad \Rightarrow \qquad h = a \cdot \sin C$$

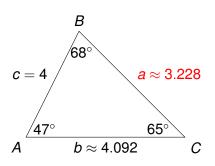
$$\sin A = \frac{h}{c} \qquad \Rightarrow \qquad h = c \cdot \sin A$$

$$\sin C = \frac{h}{a} \Rightarrow h = a \cdot \sin C$$

$$\sin A = \frac{h}{c} \Rightarrow h = c \cdot \sin A$$

$$a \cdot \sin C = c \cdot \sin A \implies$$

$$\frac{\sin A}{a} = \frac{\sin C}{C}$$


$$a \cdot \sin C = c \cdot \sin A$$
 \Rightarrow $\frac{\sin A}{a} = \frac{\sin C}{c}$

$$a \cdot \sin B = b \cdot \sin A$$
 \Rightarrow $\frac{\sin A}{a} = \frac{\sin B}{b}$

$$b \cdot \sin C = c \cdot \sin B$$
 \Rightarrow $\frac{\sin B}{b} = \frac{\sin C}{c}$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

ASA and AAS triangles

$$C = 180^{\circ} - 68^{\circ} - 47^{\circ} = 65^{\circ}$$

$$\frac{\sin 68^{\circ}}{b} = \frac{\sin 65^{\circ}}{4} \Rightarrow b \approx 4.092$$

$$\frac{\sin 47^{\circ}}{a} = \frac{\sin 65^{\circ}}{4} \Rightarrow a \approx 3.228$$

Recap

Given two angles and one side

- Find the third angle by summing to 180°
- Find the missing sides by using Law of Sines