Solving Triangles Using the Law of Sines -Part I

University of Minnesota

Preliminaries and Objectives

Preliminaries:

- Geometric definition of the sine function.
- Geometric proofs that triangles are congruent (ASA, AAS, SSS, SAS)

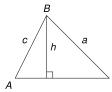
Objectives:

- Derive the Law of Sines
- Given three parts of a triangle (ASA or ASA), find the missing three parts.

University of Minnesota

Law of Sines

Law of Sines


$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Sines

$$\sin C = \frac{h}{a}$$
 \Rightarrow $h = a \cdot \sin C$
 $\sin A = \frac{h}{c}$ \Rightarrow $h = c \cdot \sin A$

$$\Rightarrow h = c \cdot \sin A$$

Law of Sines

$$\sin C = \frac{h}{a} \Rightarrow h = a \cdot \sin C$$

$$\sin A = \frac{h}{c} \Rightarrow h = c \cdot \sin A$$

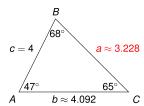
$$a \cdot \sin C = c \cdot \sin C$$

$$a \cdot \sin C = c \cdot \sin A$$
 \Rightarrow $\frac{\sin A}{a} = \frac{\sin C}{c}$

Law of Sines

$$a \cdot \sin C = c \cdot \sin A$$
 \Rightarrow $\frac{\sin A}{a} = \frac{\sin A}{c}$

$$a \cdot \sin B = b \cdot \sin A$$
 \Rightarrow $\frac{\sin A}{a} = \frac{\sin B}{b}$


$$b \cdot \sin C = c \cdot \sin B$$
 \Rightarrow $\frac{\sin B}{b} = \frac{\sin C}{c}$

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

University of Minnesota Solving Triangles Using the Law of Sines - Part

ASA and AAS triangles

$$C = 180^{\circ} - 68^{\circ} - 47^{\circ} = 65^{\circ}$$

$$a \approx 3.228 \qquad \frac{\sin 68^{\circ}}{b} = \frac{\sin 65^{\circ}}{4} \Rightarrow b \approx 4.092$$

$$\frac{\sin 47^{\circ}}{a} = \frac{\sin 65^{\circ}}{4} \Rightarrow a \approx 3.228$$

Recap

Given two angles and one side

- Find the third angle by summing to 180°
- Find the missing sides by using Law of Sines