## Trigonometry

Activity 5a - Vector Form of the Area of a Triangle
Suppose we have a triangle with one vertex at the origin. We can express two sides of the triangle as vectors $\|\vec{u}\|=\langle a, b\rangle$ and $\|\vec{v}\|=\langle c, d\rangle$

We wish to write the area of the triangle in terms of $a, b, c, d$


1. Write the area of the triangle using $\sin \theta,\|\vec{u}\|$ and $\|\vec{v}\|$
2. Find the direction of $\vec{u}$. That is, find $\theta_{u}$ in terms of $a$ and $b$
3. Find the direction of $\vec{v}$. That is, find $\theta_{v}$ in terms of $c$ and $d$
4. Express $\theta$ in terms of $\theta_{u}$ and $\theta_{v}$
5. Express $\sin \theta$ using inverse trig functions and $a, b, c, d$
6. Use the angle sum/difference formula to write $\sin \theta$ in terms of $a, b, c, d$
7. Write the area of the triangle in terms of $a, b, c, d$
8. If $\vec{u}=(5,1)$ and $\vec{v}=(4,-2)$, find the area.
9. If $\vec{u}=(4,-2)$ and $\vec{v}=(5,1)$, find the area. Do you need to adjust the formula?
