
Trigonometry

Activity 5a - Vector Form of the Area of a Triangle

Suppose we have a triangle with one vertex at the origin. We can express two sides of the triangle as vectors $||\overrightarrow{u}|| = \langle a, b \rangle$ and $||\overrightarrow{v}|| = \langle c, d \rangle$

We wish to write the area of the triangle in terms of a, b, c, d

- 1. Write the area of the triangle using $\sin \theta$, $||\overrightarrow{u}||$ and $||\overrightarrow{v}||$
- 2. Find the direction of \overrightarrow{u} . That is, find θ_u in terms of a and b
- 3. Find the direction of \overrightarrow{v} . That is, find θ_v in terms of c and d
- 4. Express θ in terms of θ_u and θ_v
- 5. Express $\sin \theta$ using inverse trig functions and a,b,c,d
- 6. Use the angle sum/difference formula to write $\sin\theta$ in terms of a,b,c,d
- 7. Write the area of the triangle in terms of a,b,c,d
- 8. If $\overrightarrow{u} = (5,1)$ and $\overrightarrow{v} = (4,-2)$, find the area.
- 9. If $\overrightarrow{u} = (4, -2)$ and $\overrightarrow{v} = (5, 1)$, find the area. Do you need to adjust the formula?