1. In Part I, we developed the following formulas:

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

Use the first formula to find a formula for

 $\cos(90^\circ + \theta)$

2. It is also true that

$$\sin(90^\circ + \theta) = \cos\theta$$

(This can be a bonus problem to be proved by the students)

- 3. Let $\theta = M + N$.
 - (a) Use the formula for $\cos(90^\circ + \theta)$ to show that

 $\sin(M+N) = -\cos(90^\circ + M + N)$

- (b) Use the formula for $\cos(A + B)$, letting $A = 90^{\circ} + M$ and B = N to write a formula for $-\cos(90^{\circ} + M + N)$
- (c) Simplify the previous expression using the formulas found in problems 1 and 2.
- (d) Combine problems 3a, b, c, to derive a formula for sin(M + N).
- 4. In problem 3) of Part I, you used a process to convert the formula for cos(A B) to a formula for cos(A + B). Use this same process to convert the formula for sin(M + N) to a formula for sin(M N).

- 5. Summarize your results:
 - $\cos(A B) =$
 - $\cos(A+B) =$
 - $\sin(A-B) =$
 - $\sin(A+B) =$
- 6. Find formulas for tan(A B) and tan(A + B) as follows:
 - (a) Write $\tan(A B)$ as $\frac{\sin(A B)}{\cos(A B)}$, then use 8) to rewrite in terms of $\sin A$, $\sin B$, $\cos A$ and $\cos B$.
 - (b) Divide both the numerator and denominator by $\cos(A)\cos(B)$ and simplify.
 - (c) Rewrite in terms of tan(A) and tan(B).
 - (d) Repeat the process for tan(A+B)
 - (e) Summarize your results.
 - $\tan(A B) =$
 - $\tan(A+B) =$