Frequency, Wavelength and Period

University of Minnesota Frequency, Wavelength and Period

Preliminaries

- Graph $y = \sin x$ and $y = \cos x$
- Amplitude
- Transformations of graphs (stretching vertically and horizontally).

Objectives

- Given an equation, find the period (wavelength) and frequency.
- Given a graph, find the period (wavelength) and frequency.
- Graph waves of the form $y = \pm A \sin(Bx)$ and $y = \pm A \cos(Bx)$.

Amplitude = 5

University of Minnesota Frequency, Wavelength and Period

B changes the width of the graph

$$y = \sin(Bx)$$

University of Minnesota Frequency, Wavelength and Period

Wavelength and Period

 $y = \sin x$

Wavelength and Period

$$y = \sin(2x)$$

Wavelength and Period

$$y = \sin(2x)$$

Period and Frequency

Period
$$=rac{2\pi}{B}$$

Frequency $=rac{B}{2\pi}$

Graphing a Wave Adjusted for Period

$$y = \sin(5x)$$

Graphing a Wave Adjusted for Period and Amplitude

Finding the Equation of a Wave from its Graph

Finding the Equation of a Wave from its Graph

• Period (wavelength) is the *x*-distance between consecutive peaks of the wave graph.

Period
$$=$$
 $\frac{2\pi}{B}$; Frequency $=$ $\frac{B}{2\pi}$

• Use amplitude to mark *y*-axis, use period and quarter marking to mark *x*-axis.