Frequency, Wavelength and Period
Preliminaries

- Graph $y = \sin x$ and $y = \cos x$
- Amplitude
- Transformations of graphs (stretching vertically and horizontally).

Objectives

- Given an equation, find the period (wavelength) and frequency.
- Given a graph, find the period (wavelength) and frequency.
- Graph waves of the form $y = \pm A \sin(Bx)$ and $y = \pm A \cos(Bx)$.
Amplitude = 5

\[y = 5 \sin x \]
B changes the width of the graph

\[y = \sin(Bx) \]
y = \sin x
Wavelength and Period

\[y = \sin(2x) \]

Period \(\text{Period} = \frac{2\pi}{2} = \pi \)
Wavelength and Period

\[y = \sin(2x) \]

Frequency \(= \frac{2}{2\pi} = \frac{1}{\pi} \)
Period and Frequency

\[y = \sin 4x \]

Period

\[\text{Period} = \frac{2\pi}{4} = \frac{\pi}{2} \]

Frequency

\[\text{Frequency} = \frac{4}{2\pi} = \frac{2}{\pi} \]
General Formulas

Period = \frac{2\pi}{B}

Frequency = \frac{B}{2\pi}
Graphing a Wave Adjusted for Period

\[y = \sin(5x) \]

Period \[= \frac{2\pi}{5} \]

\[Q = \frac{2\pi}{20} = \frac{\pi}{10} \]
Graphing a Wave Adjusted for Period and Amplitude

\[y = -2 \cos 3x \]

Period \[= \frac{2\pi}{3} \]

\[Q = \frac{2\pi}{12} = \frac{\pi}{6} \]
Finding the Equation of a Wave from its Graph

Amplitude $= A = 3$

Period $= \frac{2\pi}{B} = 4\pi \Rightarrow B = \frac{2\pi}{4\pi} = \frac{1}{2}$
Finding the Equation of a Wave from its Graph

Amplitude \(A = 2 \)

Period \(B = \frac{2\pi}{3} \Rightarrow B = 2\pi \cdot \frac{3}{\pi} = 6 \)

University of Minnesota
Frequency, Wavelength and Period
Recap

- Period (wavelength) is the x-distance between consecutive peaks of the wave graph.

$$\text{Period} = \frac{2\pi}{B}; \quad \text{Frequency} = \frac{B}{2\pi}$$

- Use amplitude to mark y-axis, use period and quarter marking to mark x-axis.