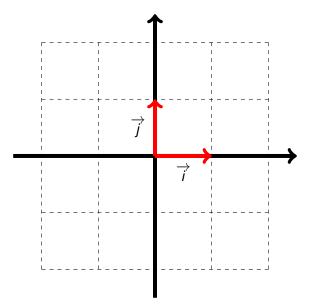
Common Notation for Vectors

Preliminaries


- Polar Coordinates
- Converting from rectangular coordinates to polar coordinates
- Converting from polar coordinates to rectangular coordinates

Objectives

- Define the norm and magnitude of a vector and basis vectors
- Convert among the three forms of a vector.

Rectangular Form: $\overrightarrow{v} = \langle a, b \rangle$

Polar Form: Length = Norm = Magnitude = $||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$ $\tan \theta = \frac{y}{y}$ Example: If $\overrightarrow{v} = \langle 4, 3 \rangle$, then $||\vec{v}|| = \sqrt{4^2 + 3^2} = 5$ $\tan \theta = \frac{3}{4} \Rightarrow \theta \approx 36.9^{\circ}$

Rectangular Form:
$$\vec{v} = \langle a, b \rangle$$
 $a = ||\vec{v}|| \cos \theta$ $b = ||\vec{v}|| \sin \theta$

Basis Vector Form: $\overrightarrow{v} = a \overrightarrow{i} + b \overrightarrow{j}$

Polar Form: Length = Norm = Magnitude = $||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$ $\tan \theta = \frac{y}{x}$ Given $\overrightarrow{v} = \langle -2, 3 \rangle$, find $||\overrightarrow{v}||$, and the direction angle θ .

Solution:
$$||\overrightarrow{v}|| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \approx 3.606$$

 $\tan \theta = -\frac{3}{2}$; $\tan^{-1} -\frac{3}{2} \approx -56.3^\circ$, however \overrightarrow{v} is in Quadrant II, so
 $\theta \approx 180 - 56.3^\circ \approx 123.7^\circ$

Given $||\overrightarrow{v}|| = 14$ and the direction angle $\theta = 132^{\circ}$, write \overrightarrow{v} as a linear combination of \overrightarrow{i} and \overrightarrow{j}

Solution: $a = 14 \cos 132^{\circ} \approx -9.37$ and $b = 14 \sin 132^{\circ} \approx 10.40$

$$\overrightarrow{v} \approx -9.37 \overrightarrow{i} + 10.40 \overrightarrow{j}$$

Rectangular Form: $\overrightarrow{v} = \langle a, b \rangle$ $a = ||\overrightarrow{v}|| \cos \theta$ $b = ||\overrightarrow{v}|| \sin \theta$

Basis Vector Form: $\overrightarrow{v} = a \overrightarrow{i} + b \overrightarrow{j}$

Polar Form: Length = Norm = Magnitude = $||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$ tan $\theta = \frac{y}{x}$