Common Notation for Vectors

\author{

1. UnIVERSITY of MINNESOTA
}

Preliminaries and Objectives

Preliminaries

- Polar Coordinates
- Converting from rectangular coordinates to polar coordinates
- Converting from polar coordinates to rectangular coordinates

Objectives

- Define the norm and magnitude of a vector and basis vectors
- Convert among the three forms of a vector.

Rectangular to Polar Conversion

Rectangular Form:

$$
\vec{v}=\langle a, b\rangle
$$

Polar Form:

$$
\text { Length }=\text { Norm }=\text { Magnitude }=\|\vec{v}\|=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=\frac{y}{x}
$$

Example: If $\vec{v}=\langle 4,3\rangle$, then

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{4^{2}+3^{2}}=5 \\
& \tan \theta=\frac{3}{4} \Rightarrow \theta \approx 36.9^{\circ}
\end{aligned}
$$

Basis Vectors

Three Forms of a Vector

Rectangular Form:

$$
\vec{v}=\langle a, b\rangle \quad a=\|\vec{v}\| \cos \theta \quad b=\|\vec{v}\| \sin \theta
$$

Basis Vector Form:

$$
\vec{v}=a \vec{i}+b \vec{j}
$$

Polar Form:
Length $=$ Norm $=$ Magnitude $=\|\vec{v}\|=\sqrt{a^{2}+b^{2}}$
$\tan \theta=\frac{y}{x}$

Given $\vec{v}=\langle-2,3\rangle$, find $\|\vec{v}\|$, and the direction angle θ.

Solution: $\|\vec{v}\|=\sqrt{(-2)^{2}+3^{2}}=\sqrt{13} \approx 3.606$
$\tan \theta=-\frac{3}{2} ; \tan ^{-1}-\frac{3}{2} \approx-56.3^{\circ}$, however \vec{v} is in
Quadrant II, so
$\theta \approx 180-56.3^{\circ} \approx 123.7^{\circ}$

Example 2

Given $\|\vec{v}\|=14$ and the direction angle $\theta=132^{\circ}$, write \vec{v} as a linear combination of \vec{i} and \vec{j}

Solution: $a=14 \cos 132^{\circ} \approx-9.37$ and $b=14 \sin 132^{\circ} \approx 10.40$

$$
\vec{v} \approx-9.37 \vec{i}+10.40 \vec{j}
$$

Recap

Rectangular Form:

$$
\vec{v}=\langle a, b\rangle \quad a=\|\vec{v}\| \cos \theta \quad b=\|\vec{v}\| \sin \theta
$$

Basis Vector Form:

$$
\vec{v}=a \vec{i}+b \vec{j}
$$

Polar Form:
Length $=$ Norm $=$ Magnitude $=\|\vec{v}\|=\sqrt{a^{2}+b^{2}}$
$\tan \theta=\frac{y}{x}$

