Common Notation for Vectors

Preliminaries and Objectives

Preliminaries

- Polar Coordinates
- · Converting from rectangular coordinates to polar coordinates
- · Converting from polar coordinates to rectangular coordinates

Objectives

- Define the norm and magnitude of a vector and basis
- · Convert among the three forms of a vector.

University of Minnesota

Rectangular to Polar Conversion

Rectangular Form: $\overrightarrow{V} = \langle a, b \rangle$

$$\overrightarrow{v} = \langle a, b \rangle$$

Polar Form:

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$

$$\tan \theta = \frac{y}{x}$$

Example: If $\overrightarrow{v} = \langle 4, 3 \rangle$, then

$$||\overrightarrow{v}|| = \sqrt{4^2 + 3^2} = 5$$

$$\tan \theta = \frac{3}{4} \Rightarrow \theta \approx 36.9^{\circ}$$

Basis Vectors

Three Forms of a Vector

$$\overrightarrow{V} = \langle a, b \rangle$$
 $a = ||\overrightarrow{V}|| \cos \theta$ $b = ||\overrightarrow{V}|| \sin \theta$

Basis Vector Form:
$$\overrightarrow{V} = \overrightarrow{a} \overrightarrow{i} + \overrightarrow{b} \overrightarrow{j}$$

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$

$$\tan \theta = \frac{y}{x}$$

Example 1

Given $\overrightarrow{v} = \langle -2, 3 \rangle$, find $||\overrightarrow{v}||$, and the direction angle θ .

Solution:
$$||\overrightarrow{v}|| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \approx 3.606$$

$$an heta=-rac{3}{2};\; an^{-1}-rac{3}{2}pprox-56.3^\circ,$$
 however $\overrightarrow{
u}$ is in

$$\theta \approx 180-56.3^{\circ} \approx 123.7^{\circ}$$

Example 2

Given $||\overrightarrow{v}|| = 14$ and the direction angle $\theta = 132^{\circ}$, write \overrightarrow{v} as a linear combination of \overrightarrow{i} and \overrightarrow{j}

Solution:
$$a=14\cos 132^{\circ}\approx -9.37$$
 and $b=14\sin 132^{\circ}\approx 10.40$

$$\overrightarrow{V} \approx -9.37\overrightarrow{i} + 10.40\overrightarrow{j}$$

Recap

$$\overrightarrow{V} = \langle a b \rangle$$

$$\overrightarrow{V} = \langle a, b \rangle$$
 $a = ||\overrightarrow{V}|| \cos \theta$ $b = ||\overrightarrow{V}|| \sin \theta$

Basis Vector Form: ($\overrightarrow{V} = \overrightarrow{ai} + \overrightarrow{bi}$

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$

$$\tan \theta = \frac{y}{y}$$