Adding and Subtracting Vectors

Preliminaries and Objectives

Preliminaries

- Cartesian Coordinate System
- Vectors

Objectives

- Add vectors
- Subtract vectors
- Scale vectors

Location of Vectors

Finding Vector Components

To find the vector \overrightarrow{v} that begins at (x_1, y_1) and ends at (x_2, y_2) , subtract the beginning coordinates from the ending coordinates.

That is
$$\overrightarrow{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

Example: If vector \overrightarrow{v} begins at (-3,1) and ends at (1,4), then

$$\overrightarrow{v} = \langle 1 - (-3), 4 - 1 \rangle = \langle 4, 3 \rangle$$

Adding Vectors

Adding Vectors

To add the vectors $\overrightarrow{u} = \langle u_1, u_2 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2 \rangle$, add the coordinates.

That is
$$\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Example: If vector $\overrightarrow{u}=\langle 4,3\rangle$ and $\overrightarrow{v}=\langle -2,1\rangle$, then

$$\overrightarrow{U} + \overrightarrow{V} = \langle 4 - 2, 3 + 1 \rangle = \langle 2, 4 \rangle$$

The opposite of $\overrightarrow{u} = \langle u_1, u_2 \rangle$ is $\overrightarrow{-u} = \langle -u_1, -u_2 \rangle$

The Opposite of a Vector

Subtracting Vectors

the coordinates.

Subtracting Vectors

That is $\overrightarrow{u} - \overrightarrow{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$

Example: If vector $\overrightarrow{u} = \langle 4, 3 \rangle$ and $\overrightarrow{v} = \langle -2, 1 \rangle$, then

$$\overrightarrow{u} - \overrightarrow{v} = \langle 4 - (-2), 3 - 1 \rangle = \langle 6, 2 \rangle$$

To subtract the vectors $\overrightarrow{u} = \langle u_1, u_2 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2 \rangle$, subtract

Scaling Vectors

Scaling Vectors

To find the vector that is k times as long as $\overrightarrow{v}=\langle v_1,v_2\rangle$, multiply each coordinate of \overrightarrow{v} by k

That is
$$k\overrightarrow{v} = \langle kv_1, kv_2 \rangle$$

Example: If vector $\overrightarrow{v} = \langle 4, 3 \rangle$, then

$$2\overrightarrow{v}=\langle 8,6 \rangle$$

Recap

Adding vectors:
$$\overrightarrow{U} + \overrightarrow{V} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Subtracting vectors:
$$\overrightarrow{U} - \overrightarrow{V} = \langle u_1 - v_1, u_2 - v_2 \rangle$$

Scaling vectors: $k\overrightarrow{v} = \langle kv_1, kv_2 \rangle$

$$k\overrightarrow{V} = \langle kv_1, kv_2 \rangle$$